
Collaborative expertise

Synergies between multi-disciplinary experts and end users in software development

Aaron Ponti

1

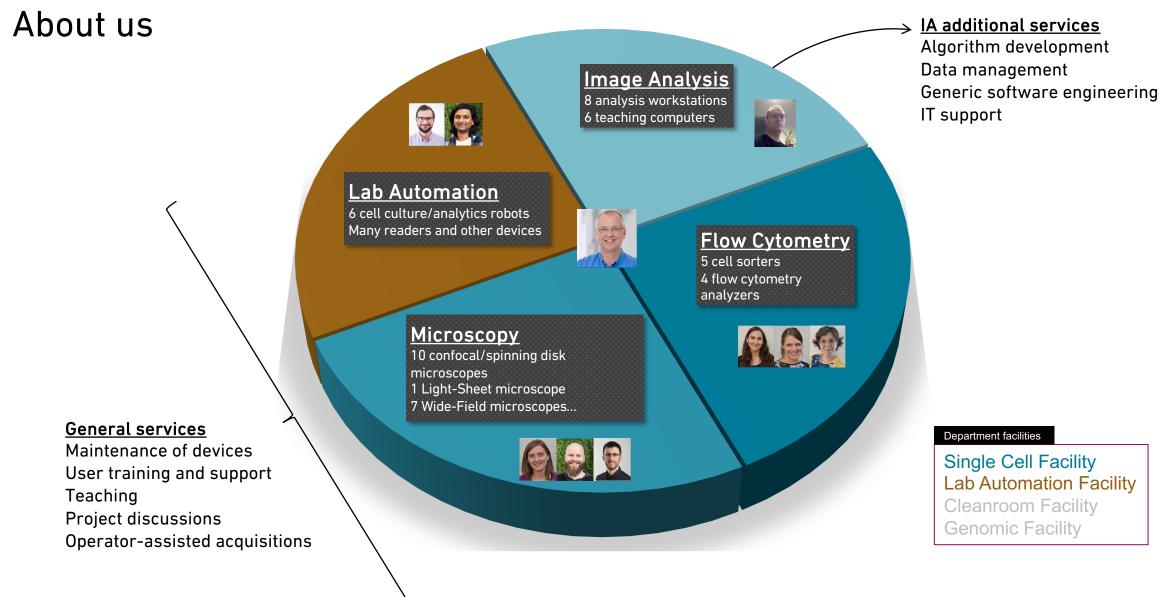
EHzürich

About me

Education

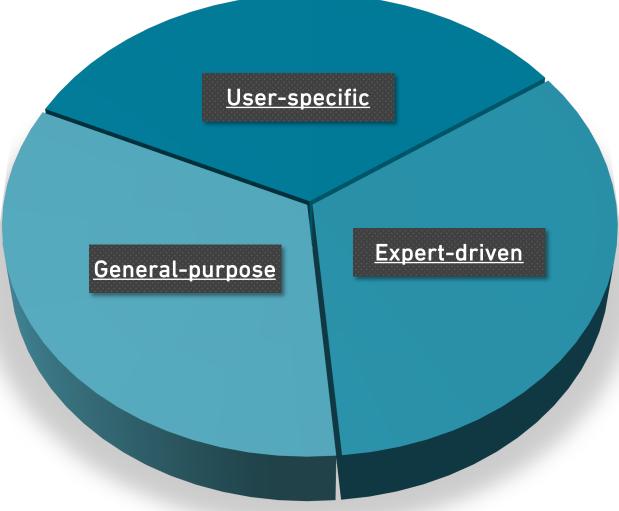
- M. Sc. Biotechnology
 D-BIOL ETH Zurich
- PhD Image Analysis
 D-MAVT ETH Zurich
- Post-doctoral fellow Image Analysis
 The Scripps Research Institute, San Diego, CA

As a grown-up

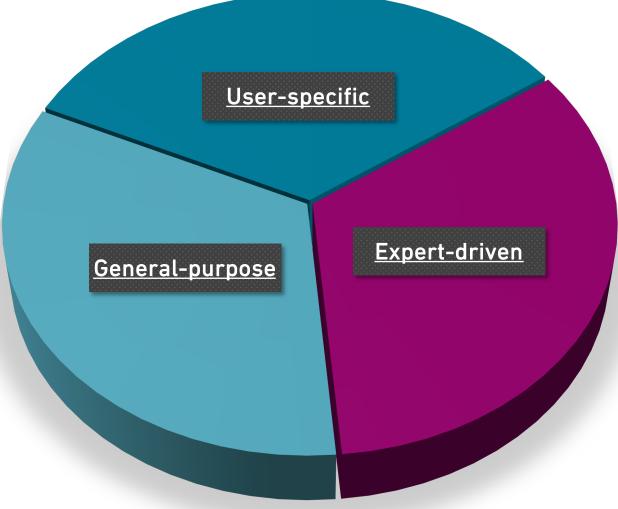

• Image analysis specialist

Friedrich Miescher Institute :: Facility for Advanced Imaging and Microscopy

• Image Analysis Specialist & Software and Data Management Engineer D-BSSE ETH Zurich :: Single Cell Facility



Briefly D-INFK ETH Zurich


SCF ••••

IA project classes

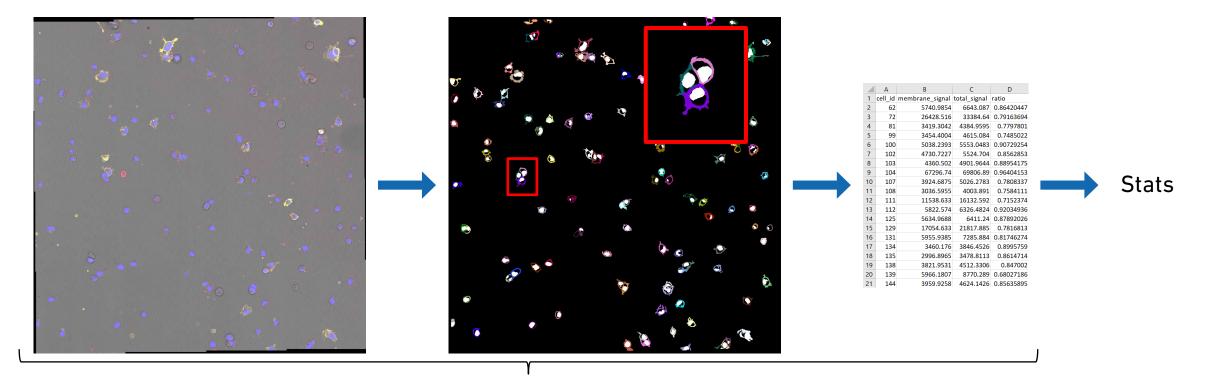
IA project classes

Types of project

	User-specific projects	Expert-driven projects	General-purpose projects
Target audience	Single user	Several users	Many users
Specificity	Highly specialized	Specialized but scalable	Generalized
Team composition	Me (with user feedback)	Me and field experts (with user feedback)	Large and diverse team
Problem focus	Single, user-specific	Niche problems	Broad
Complexity	Varies	Complex	Moderate to complex
Scalability	Limited	Moderate	High
User input	Continuous	Initial and iterative (at release)	Initial and iterative (at release)
Project time	Short to moderate	Moderate to long	Long
Resource allocation	Moderate	High	Very high
Field knowledge	High (me)	Very high (experts)	Moderate
Code quality/testing	Minimal to moderate	High	Very high

User-specific projects

	User-specific projects
Target audience	Single user
Specificity	Highly specialized
Team composition	Me (with user feedback)
Problem focus	Single, user-specific
Complexity	Varies
Scalability	Limited
User input	Continuous
Project time	Short to moderate
Resource allocation	Moderate
Field knowledge	High (me)
Code quality/testing	Minimal to moderate


EHzürich

11

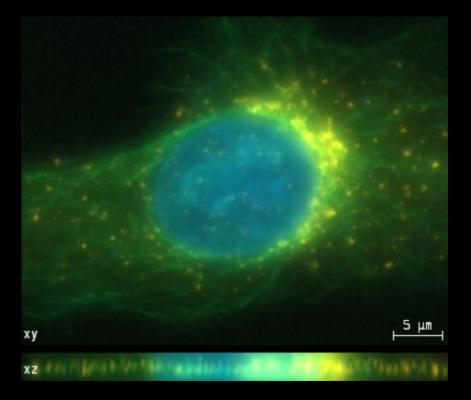
User-specific projects :: Membrane localization study of a sensor

🕥 🔟 👔 🏏 🔯 🛞 📶 🖉 😴 🌜 📓 🕼 🚳 📾 🖉 🚳 🚳 🖉 📣 🚽

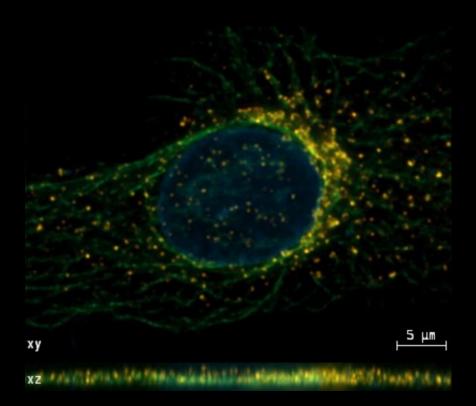
We designed a plasmid-based sensor consisting of two fusion-protein, that bind activated KRAS and can phosphorylate a synthetic transcription factor if it they dimerize. (...) As KRAS is a membrane protein and our sensor binds only to activated KRAS, membrane localization of our sensor-SYFP-fusion also tells us if KRAS is activated. (One of the) aim(s) of the study: **investigate differences in membrane localization of the sensor between mutant and wild-type KRAS**.

\$ python analyze_membranes.py --folder E.GS3.56.1_reseeding --result result.csv --max-workers 8

Qt

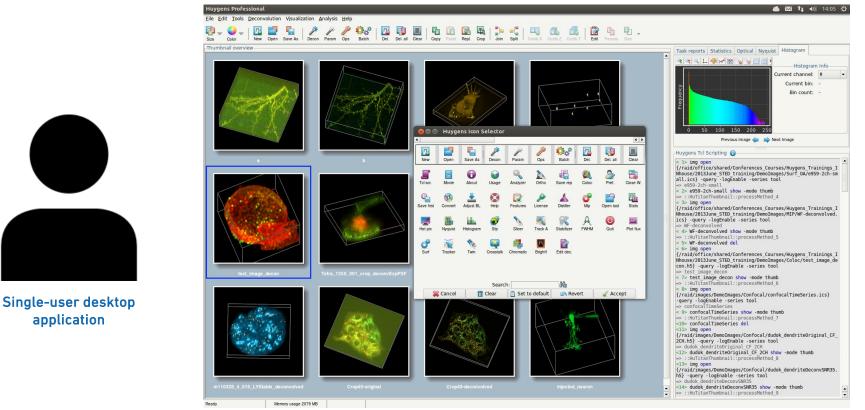

jupyter

General-purpose projects


	General-purpose projects
Target audience	Many users
Specificity	Generalized
Team composition	Large and diverse team
Problem focus	Broad
Complexity	Moderate to complex
Scalability	High
User input	Initial and iterative (at release)
Project time	Long
Resource allocation	Very high
Field knowledge	Moderate
Code quality/testing	Very high

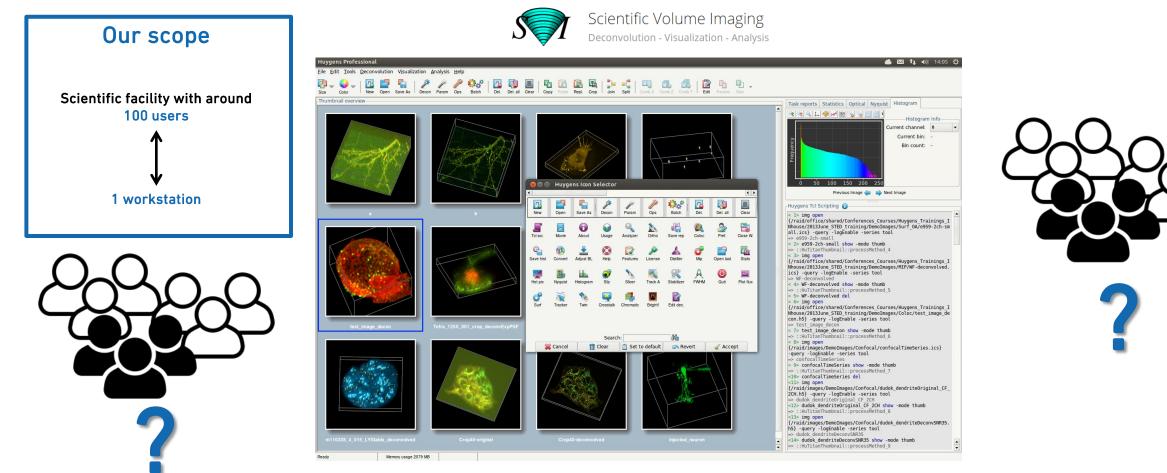
General-purpose projects :: Huygens Remote Manager (HRM)

Deconvolution of an HeLa cell acquired on a widefield microscope. *Image courtesy Dr. Yury Belyaev. EMBL, Heidelberg, Germany.*



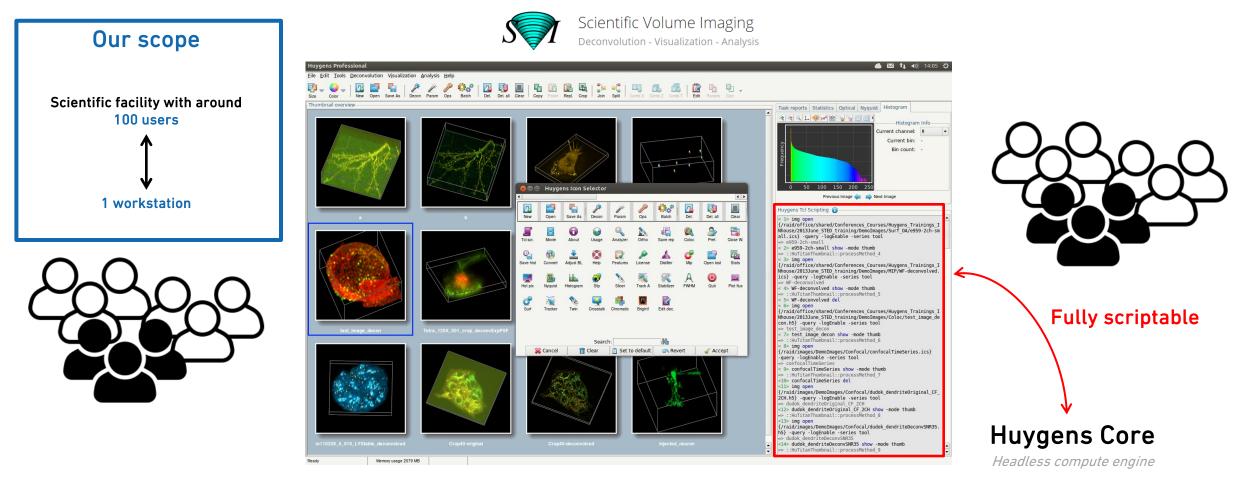
General-purpose projects :: Huygens Remote Manager (HRM)

Scientific Volume Imaging



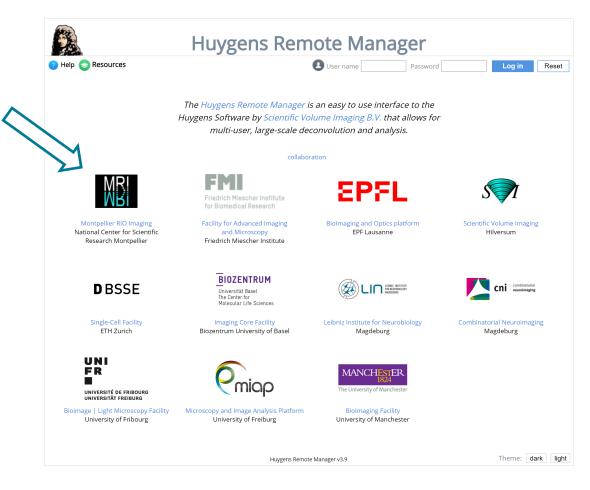
Huygens Professional

General-purpose projects :: Huygens Remote Manager (HRM)



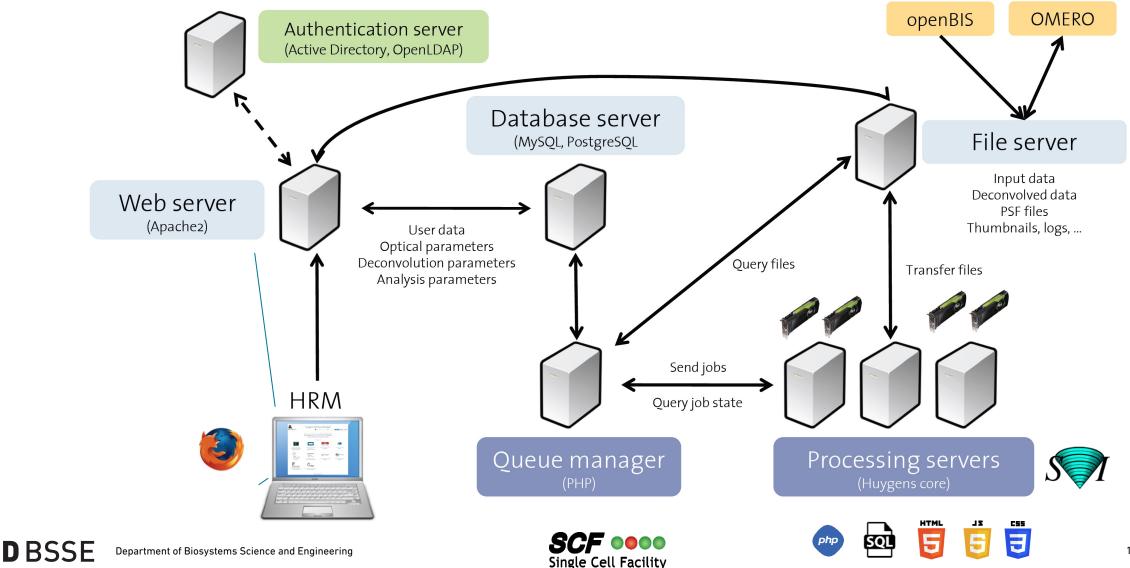
Huygens Professional

General-purpose projects :: Huygens Remote Manager (HRM)

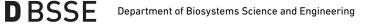


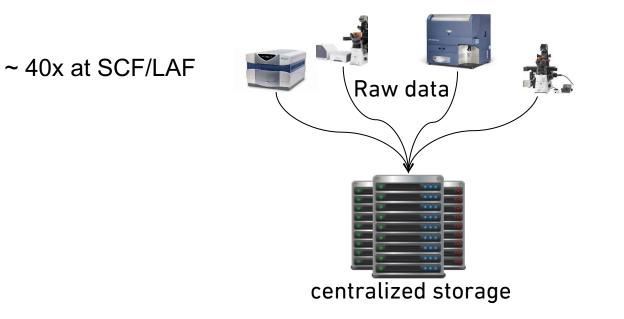
Huygens Professional

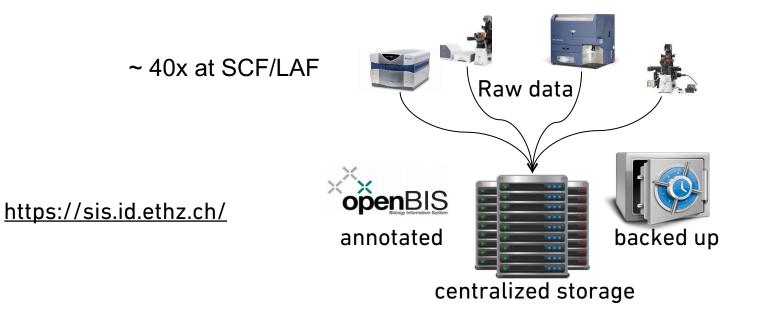
Ponti A., Sevilla Sanchez D., Ehrenfeuchter N., Belyaev Y. G.I.T. Imaging & Microscopy 2:22 – 24. 2015 Ponti A., Gulati A., Bäcker V. and Schwarb P. Imaging & Microscopy 9(2):57-58. 2007.

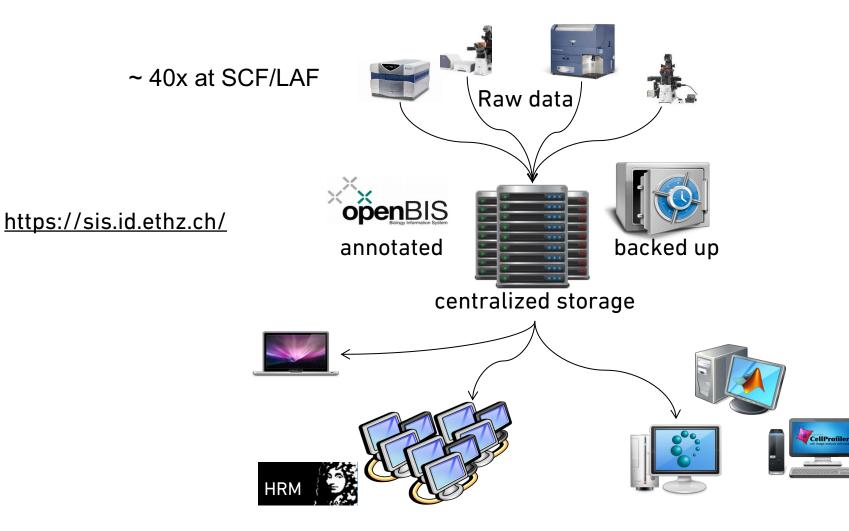

General-purpose projects :: Huygens Remote Manager (HRM)

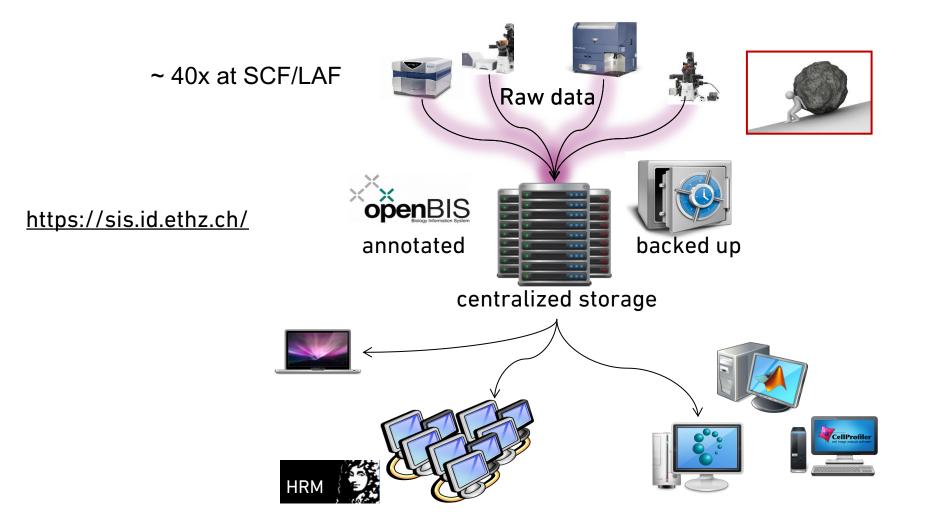
https://github.com/aarpon/hrm/

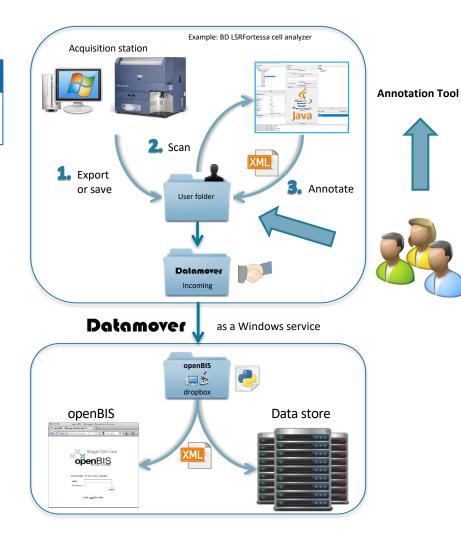

General-purpose projects :: Huygens Remote Manager (HRM)


16.10.23 | 15





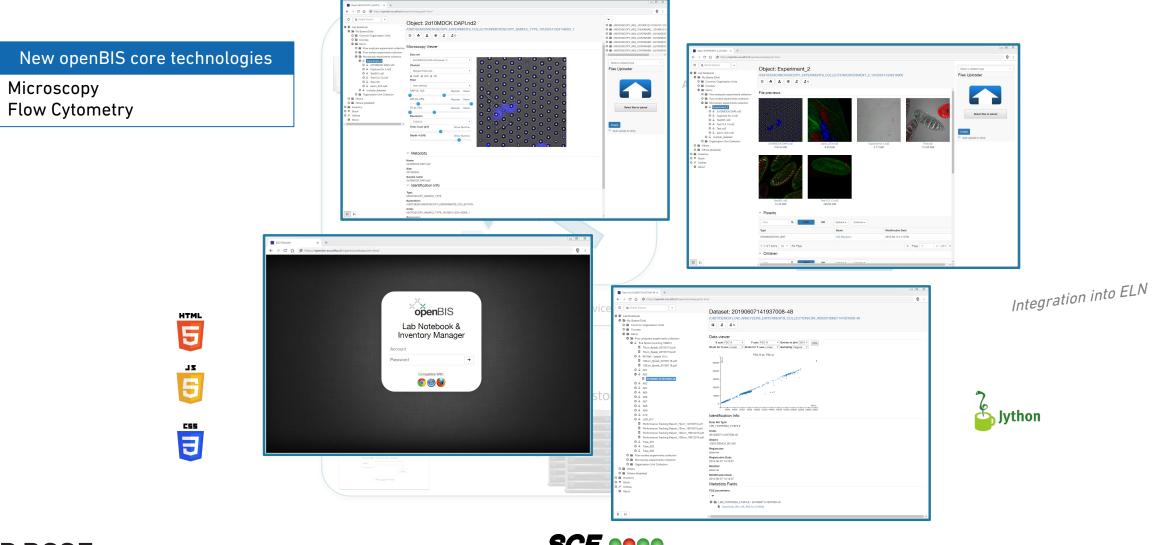




General-purpose projects :: openBIS Importer Toolset (oBIT)

New openBIS core technologies

Microscopy Flow Cytometry



https://github.com/aarpon/obit

- 0 × openBIS Importer Toolset (oBIT) = Annotation Tool v2.0.0 courses Jobrt Eva Spore Counting 190612 Eva Spore Counting 190612 Eva Spore Counting 190612 Eva Spo 22 Specimen 001 Drag and drop your tags here from the openBIS V 405 406 407 408 409 Plate geometr 96 WELLS 8X12 Target openBIS project • 🏹 Specimen_00 Scan 0 2496 0 10:49:1 4,3,2,1 LSRII F SBEGINDATA SBEGINSTEX SBTIM SBYTEORD SCYT SDATATYPE SDATATYPE SENDANALYS SENDANALYS SENDATA SENDSTEXT SETIM SFIL . 19-JUN-2012 Scan 0 158739 0 10:49:21 Create new tag. Specimen_001_A2_A02.fcs valid dataset Ele or folde Toolie Send to openBI 06-06-2019 15:53:09: Successfully logged in to openBIS. 06-06-2019 15:53:10: Retrieving openBIS structure... 06-06-2019 15:53:10: Retrieving openBIS structure complete 06-06-2019 15:53:10: Samming user data folder... 06-06-2019 15:53:11: Scanning user data folder completed.

General-purpose projects :: openBIS Importer Toolset (oBIT)

📕 🔽 = Experiment 2				Recent -	
File Home Share View				Vire QO	
Share Email Zip	No shortcuts available v accei			Recent add	ion sys
Send	Share with				0)0
\leftarrow \rightarrow \checkmark \uparrow 📜 « Micros » E	xperiment 2 🗸 🗸	℅ Search Experiment	t 2		
Name		Date modified	Туре	Size	
2d10MDCK DAPI.nd2			LIM images	323,752 KB	
🚾 aaron_3Ch.nd2			LIM images	6,344 KB	
🔤 aaron_Drosoph_multiple-xy_2Ch_	5z.nd2		LIM images	92,616 KB	
🔤 Captured for 4.nd2			LIM images	2,780 KB	
Performance Tracking Report_70um_14012015.pdf			Adobe Acrobat D	64 KB	
Performance Tracking Report_100um_19012015.pdf			Adobe Acrobat D	64 KB	
Ms Test.nd2			LIM images	116,000 KB	
Test001.nd2			LIM images	76,188 KB	
Mage Test13.2.13.nd2			LIM images	172,548 KB	
	- 1-	Store Server			
Dire	ect view on the Data	1510100			
9 items					

ETH zürich

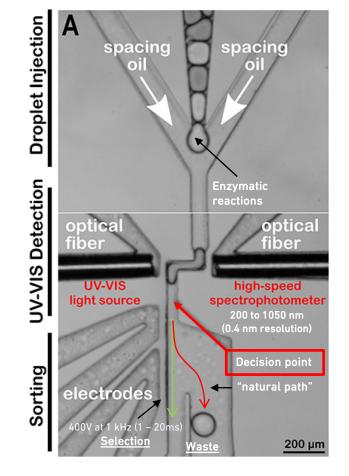
Scientific IT Services

Expert-driven projects

	Expert-driven projects
Target audience	Several users
Specificity	Specialized but scalable
Team composition	Me and field experts (with user feedback)
Problem focus	Niche problems
Complexity	Complex
Scalability	Moderate
User input	Initial and iterative (at release)
Project time	Moderate to long
Resource allocation	High
Field knowledge	Very high (experts)
Code quality/testing	High

Expert-driven projects

Specificity	Specialized but scalable
Three ex	ample projects
	traSorter
Problem focus pyP	OCQuant
Complexity pyN	1INFLUX
Scalability	Moderate

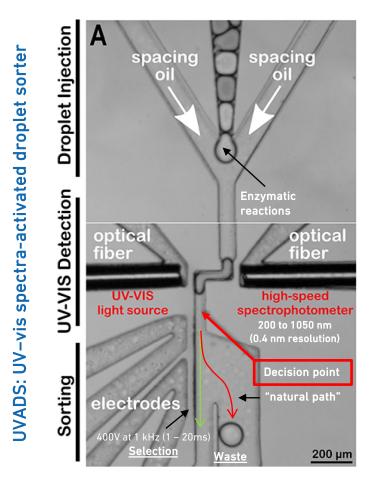


EHzürich

Expert-driven projects :: SpectraSorter

Duncombe T. A., Ponti A., Dittrich P. S. SoftwareX, Volume 19, 2022, 101160 DOI:10.1016/j.softx.2022.101160 Duncombe T. A., Ponti A., Seebeck F. P., Dittrich P. S. 2021. DOI: 10.1021/acs.analchem.1c02822

Goal Design a microfluidic platform for the high-throughput analysis of (enzymatic) reactions inside small droplets.



Expert: Todd Duncombe, Petra Dittrich Group, D-BSSE ETHZ

Expert-driven projects :: SpectraSorter

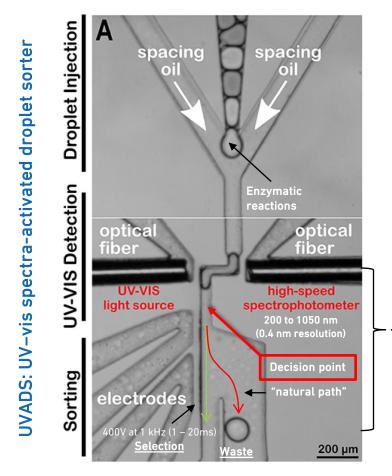
Duncombe T. A., Ponti A., Dittrich P. S. SoftwareX, Volume 19, 2022, 101160 DOI:10.1016/j.softx.2022.101160 Duncombe T. A., Ponti A., Seebeck F. P., Dittrich P. S. 2021. DOI: 10.1021/acs.analchem.1c02822

In **droplet microfluidic platforms**, droplets containing cells or reagents flow though capillaries. Inside each droplet, a reaction takes place, and the output is measured *by some means*. These platforms aim at achieving highthroughput and/or massively parallel analytics.

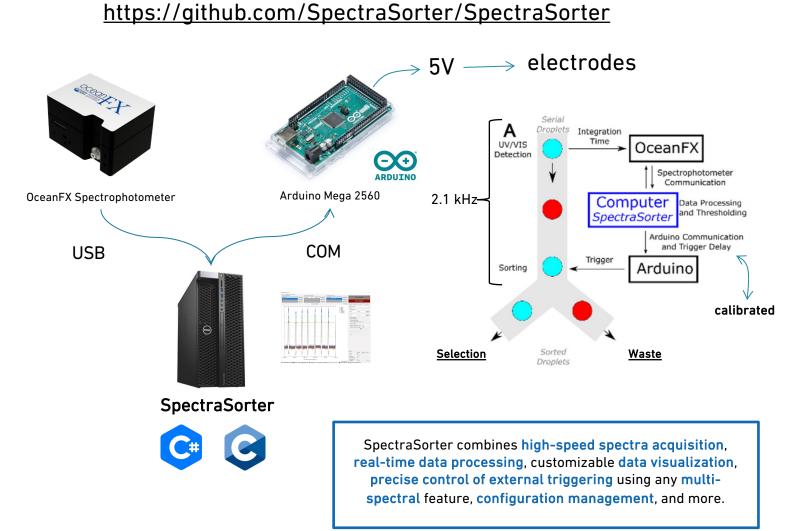
Previous approaches were very low throughput (1-10 droplets / second) and used fluorescence microscopy to measure single-wavelength absorbance in the visible spectrum.

Recent label-free UV-vis spectroscopy interrogates molecular structures directly by chemical absorbance of incident light over a large spectrum (200 to 1050 nm)

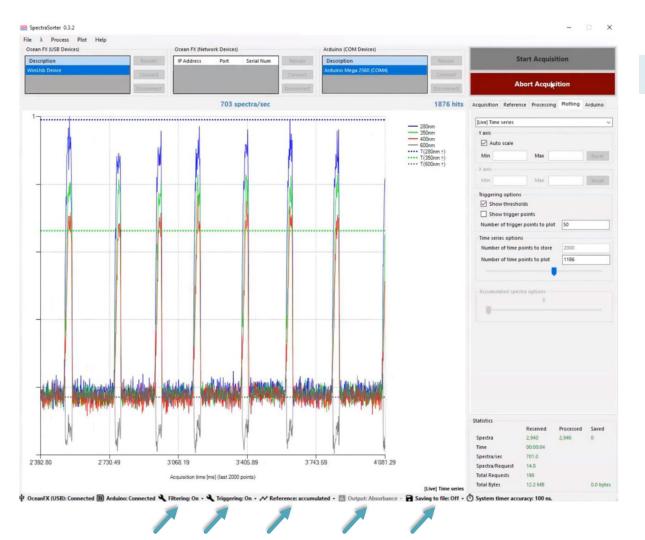
Our microfluidic platform (UVADS) can perform screening assays of enzymatic activity in droplets of bacterial micro-colonies by directly measuring the conversion to product by UV-vis spectroscopy and sort selected droplets using electrodes.


High-throughput label-free chemical identification in droplets and **on-demand** collection (via electrodes)

DBSSE


Expert-driven projects :: SpectraSorter

Duncombe T. A., Ponti A., Dittrich P. S. SoftwareX, Volume 19, 2022, 101160 D0I:10.1016/j.softx.2022.101160 Duncombe T. A., Ponti A., Seebeck F. P., Dittrich P. S. 2021. D0I: 10.1021/acs.analchem.1c02822


High-throughput label-free chemical identification in droplets and <u>on-demand</u> collection (via electrodes)

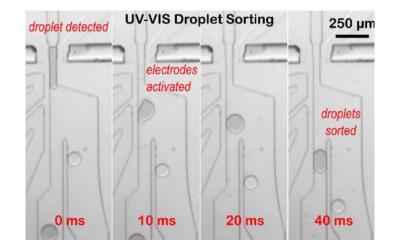
Expert-driven projects :: SpectraSorter

Duncombe T. A., Ponti A., Dittrich P. S. SoftwareX, Volume 19, 2022, 101160 DOI:10.1016/j.softx.2022.101160 Duncombe T. A., Ponti A., Seebeck F. P., Dittrich P. S. 2021. DOI: 10.1021/acs.analchem.1c02822

SpectraSorter runs four parallel queues:

- Acquisition queue: collects up to 4500 spectra/s from the spectrometer
- **Compute** queue: performs all operations to decide if an event should trigger the Arduino microcontroller (low-pass filtering, transformation for absorbance or transmission, dark- and reference-correction, testing against all user-defined thresholds, triggering via Arduino)
- **Plotting** queue: plots the last spectrum at very low rate (10 Hz) for visual feedback
- Saving queue: writes to file the processed wavelengths (either a selection, a range, or the full spectrum)

.

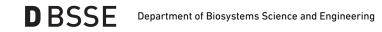

Expert-driven projects :: SpectraSorter

Duncombe T. A., Ponti A., Dittrich P. S. SoftwareX, Volume 19, 2022, 101160 DOI:10.1016/j.softx.2022.101160 Duncombe T. A., Ponti A., Seebeck F. P., Dittrich P. S. 2021. DOI: 10.1021/acs.analchem.1c02822

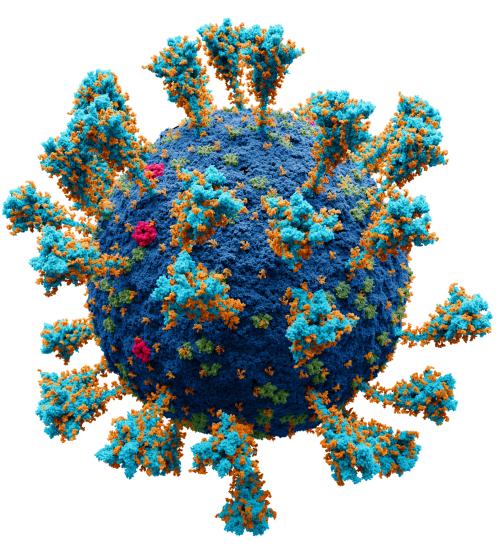
	Wavelength	Threshold	Trigger	Above threshold	Time series	Save	Color
	200	0.5			\checkmark		
	250	0.2			\checkmark	\checkmark	
	300	0.1			\checkmark		
	365	0			\checkmark		
	400	0			\checkmark		
	456	0			\checkmark		
	500	0			\checkmark		
	600	0					
	801	0					
	1000	0					
•	1030	0					
		Add			Ren	nove	
Savi	ng						
Save range instead of individual wavelengths			IS	Select range			
Wav	elengths current	ly saved:	200, 250, 365, 4	400, 600, 1000, 1030	(nm)		
Trigg	gering						
Enable			All thresh	All thresholds must be satisfied to trigger			

The Wavelength Hub allows selection of any number of wavelengths that:

- act as a threshold for a triggering event (and in which way)
- will be displayed in the plotter as time series and/or as full spectra
- will be saved to disk


Expert-driven projects :: SpectraSorter

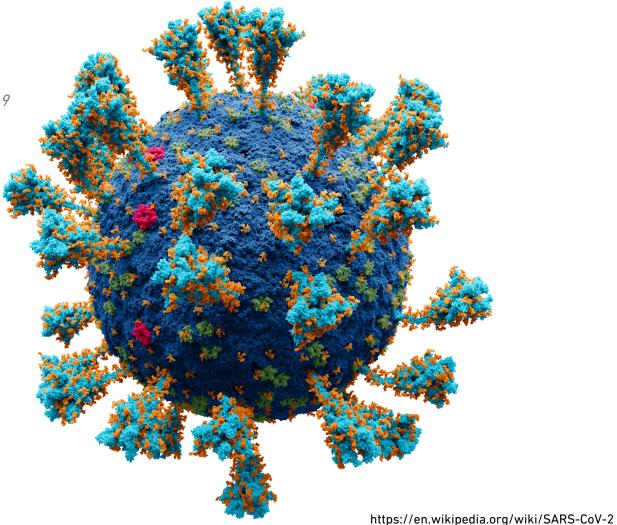
Expert contributions


Todd Duncombe: development of the UVADS methodology and the microfluidics chip **Aaron Ponti**: software development

Users

Petra Dittrich group

https://en.wikipedia.org/wiki/SARS-CoV-2

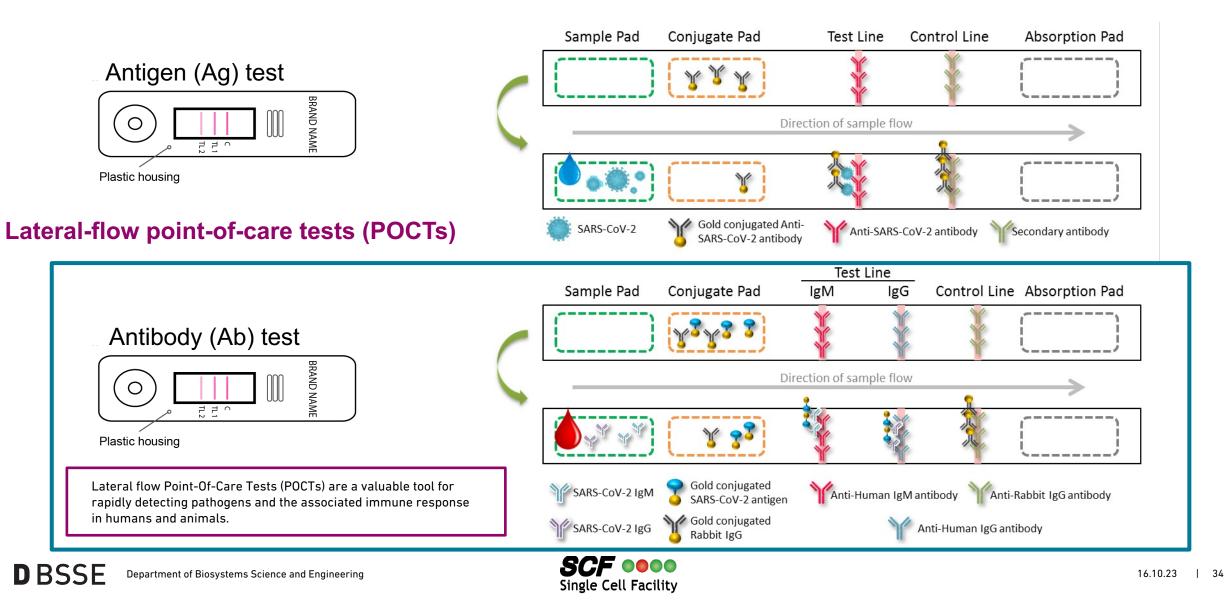


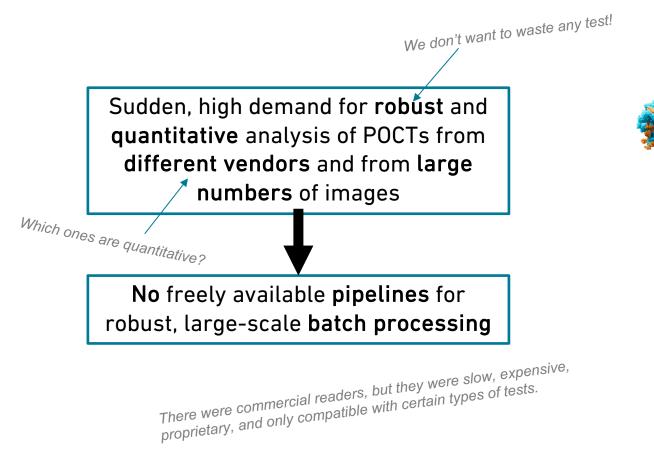
On request by Baselland Test Center (via Biolytix AG)

> First wave of COVID-19 Spring 2020

Requirements

- Quantify the levels of IgG and IgM antibodies in patients' blood samples over time to study the body's immune response to SARS-CoV-2
- 2. Associate patient metadata to each analysis and store the results in a database




Experts:

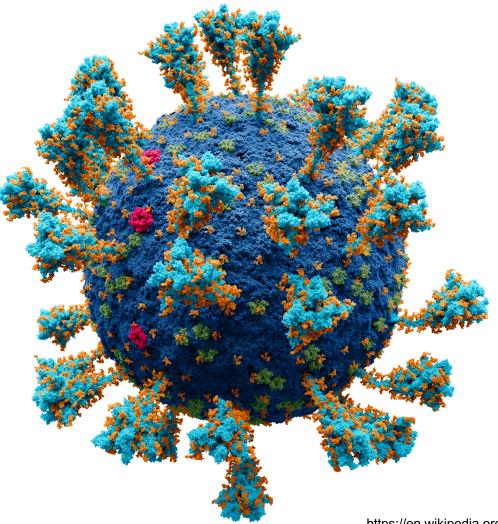
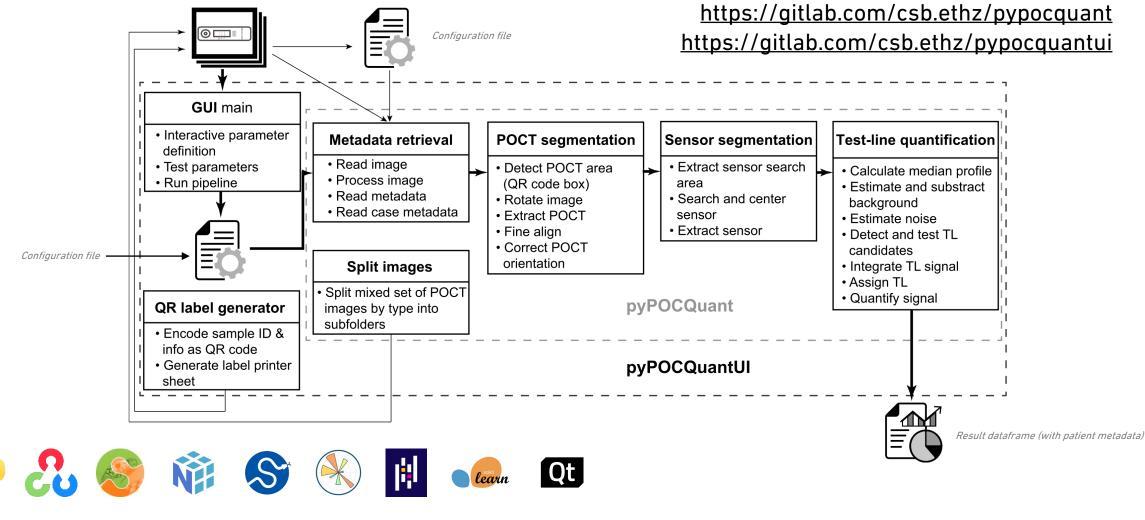
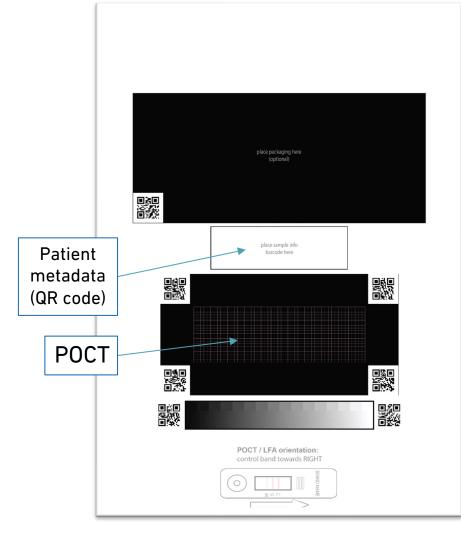
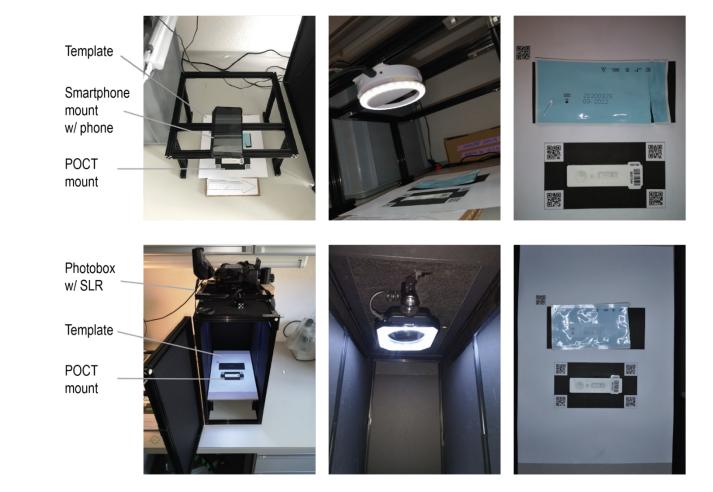

Fabian Rudolf, Bundesamt für Gesundheit, CH **Andreas Cuny**, Joerg Stelling group, D-BSSE ETHZ

Image source: https://www.acebiolab.com/EN/news/44



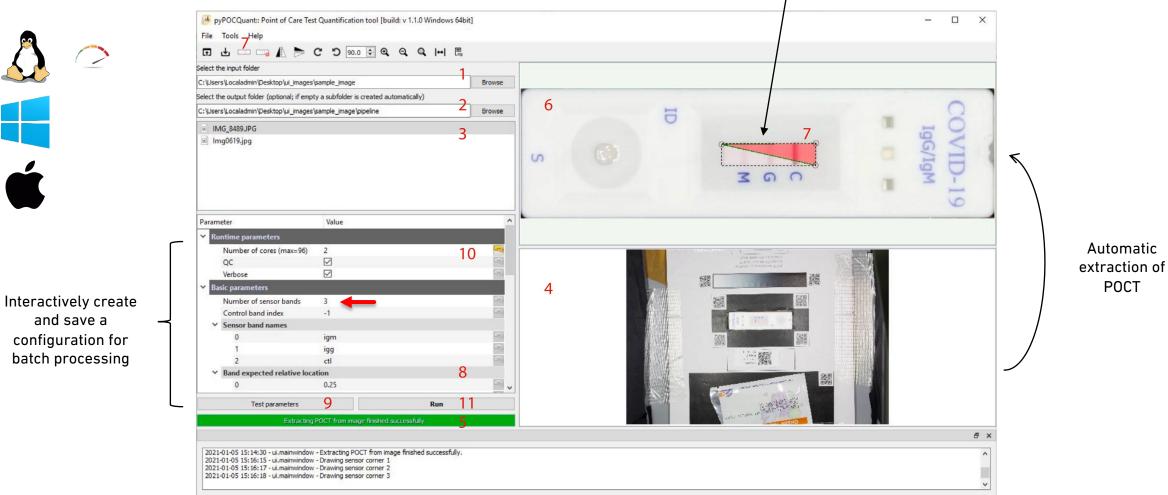
https://en.wikipedia.org/wiki/SARS-CoV-2




- We needed to be able to analyse batches of hundreds to thousands of tests with very low failure rate
- However, several parameters strongly affect the robustness of our quantitative analysis:
 - illumination variability (given by acquisitions performed at different times of the day, weather conditions, shadows, reflections)
 - scaling and orientation of the images (due to freehand shots with cameras or smartphones)
 - intensity corrections by the camera (intensity stretching, white balancing, and compression) and its file formats (*e.g.*, RAW vs. JPG)
 - different sizes, colors, and shapes of POCTs from different vendors
 - random positioning and orientation of the POCT in the field of view
 - often difficult localization of the detector window

Slide courtesy: Andreas Cuny

Expert-driven projects :: pyPOCQuant



Work by Andreas Cuny

User defines window and test line positions (and number)

User defines window and test line positions (and number)

		Browse	- • ×
6 Inter con bat	E	$\begin{array}{c} \leftrightarrow \leftrightarrow \uparrow \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \\ \hline	COVID-19 IgG/IgM
	Extracting POCT from image finished successfully.	and states of states	ē x
	2021-01-05 15:14:30 - ui.mainwindow - Extracting POCT from image finished successfully. 2021-01-05 15:16:15 - ui.mainwindow - Drawing sensor corner 1 2021-01-05 15:16:17 - ui.mainwindow - Drawing sensor corner 2 2021-01-05 15:16:18 - ui.mainwindow - Drawing sensor corner 3		

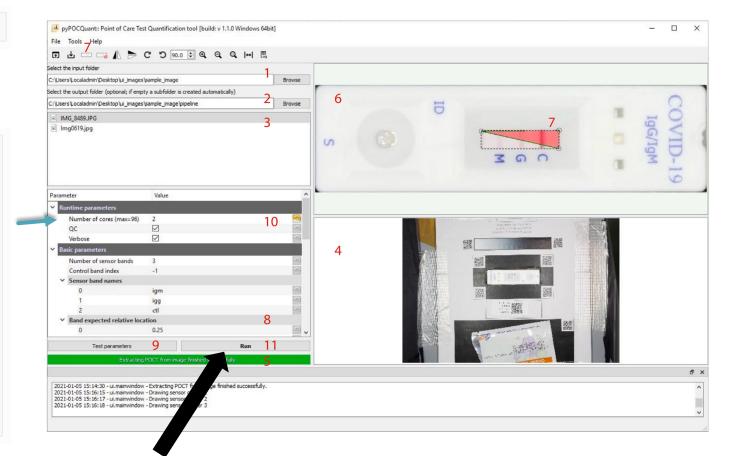
Run from console

python pyPOCQuant.py -f examples/images -o examples/images/results -s examples/config.conf -w 4

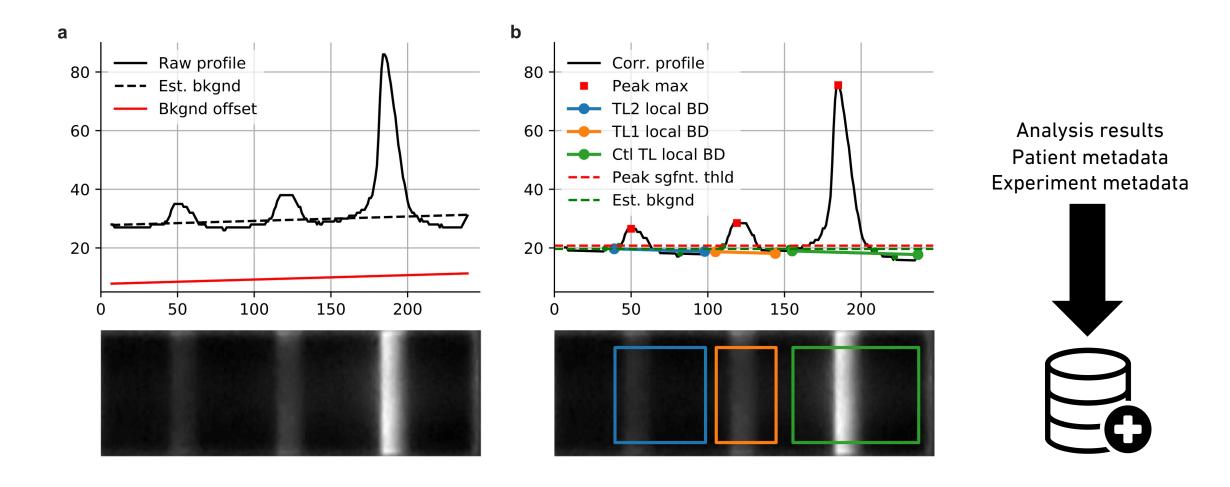
Run from scripts or notebooks

from pypocquant.lib.pipeline import run_pipeline
from pypocquant.lib.settings import default_settings

Get the default settings
settings = default_settings()

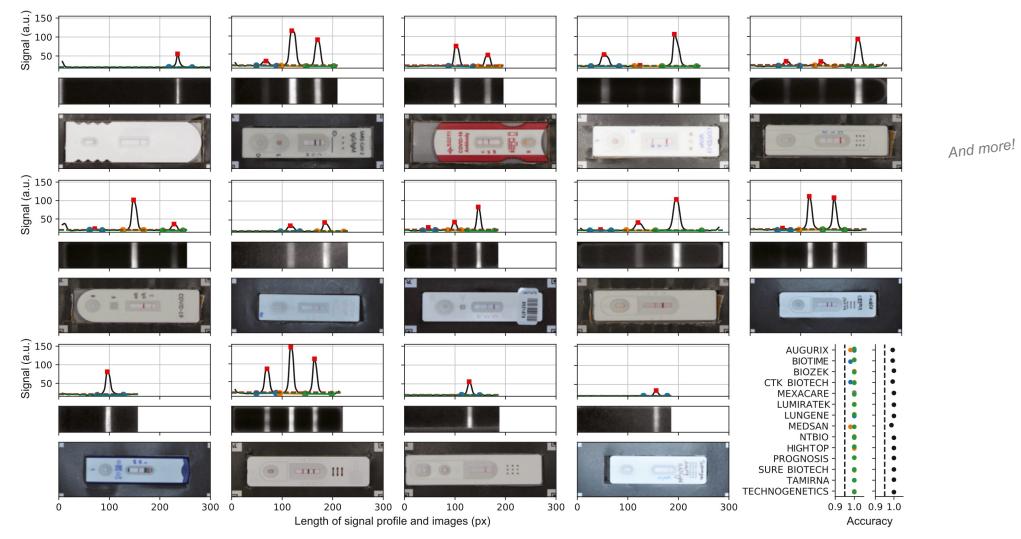

Change settings manually as needed
settings["sensor_band_names"] = ('igm', 'igg', 'ctl')

Alternatively, load existing settings file
from pypocquant.lib.settings import load_settings
settings = load_settings('full/path/to/settings/file.conf')


Set final argument
input_folder_path = 'full/path/to/input/folder'
results_folder_path = 'full/path/to/results/folder'
max_workers = 8

Run the pipeline
run_pipeline(
input_folder_path,
results_folder_path,
**settings,
max_workers=max_workers

Run from user interface



Expert-driven projects :: pyPOCQuant

Cuny A. P., Rudolf F., Ponti A. SoftwareX 15:2021, 100710. DOI: 10.1016/j.softx.2021.100710

Work by Andreas Cuny

Expert contributions

Fabian Rudolf: development of the testing methodology, field work, and project management Andreas Cuny: development of hardware components of pyPOCQuant, application development Aaron Ponti: computer vision algorithm development, application development

Users

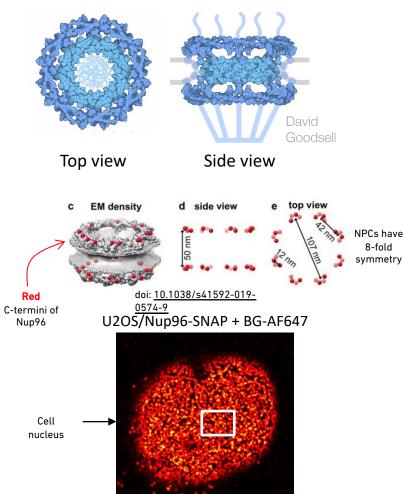
- Baselland Test Center (via Biolytix AG)
- Swiss Tropical and Health Institute (TPH), Basel
- Fachhochschule Nordwestschweiz (FHNW), Muttenz
- Swiss Armed Forces 🔶
- Canton Grisons and Swiss Federal Office of Public Health (Kantonaler Führungsstab Graubünden)
- Purdue University, Indiana, USA
- Test centers in Argentina and Greece

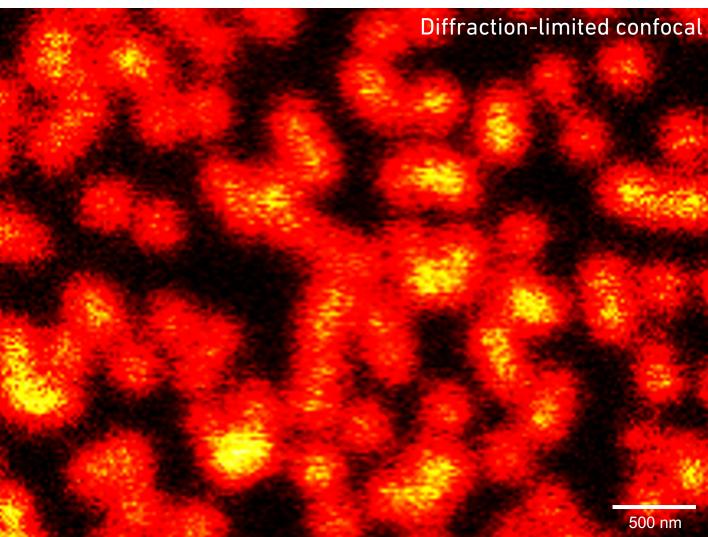
New hardware prototype (with touch screen and Raspberry Pi 4 Model B) for the Swiss Armed Forces

Adapted user interface (and template) for the new hardware

Large-scale testing before Rekrutenschule Summer 2020

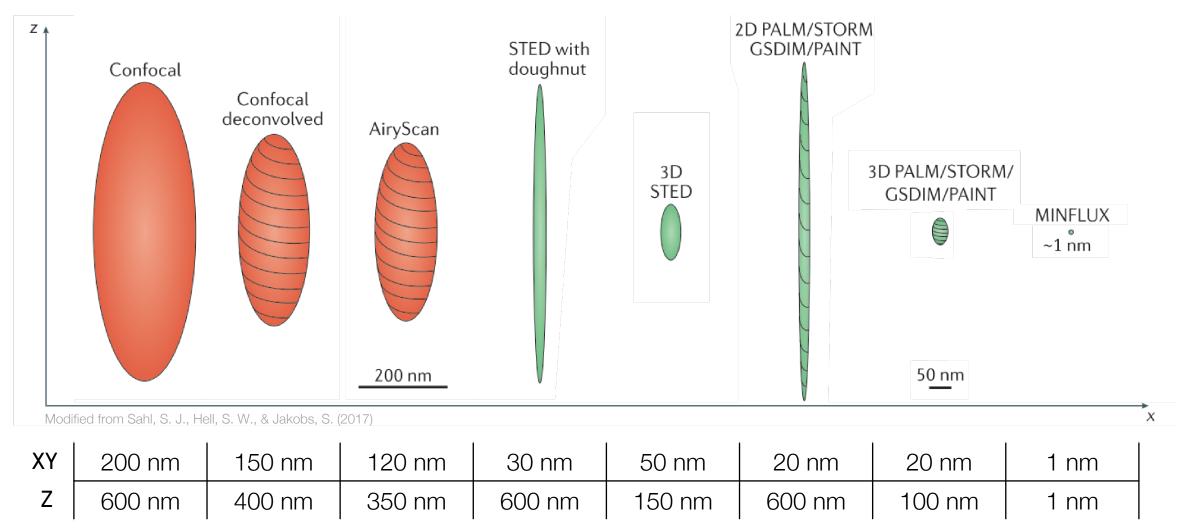
Expert: Javier Casares Arias, Single Cell Facility, D-BSSE ETHZ

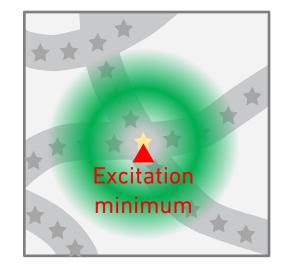



DBSSE

Slide courtesy: Javier Casares Arias

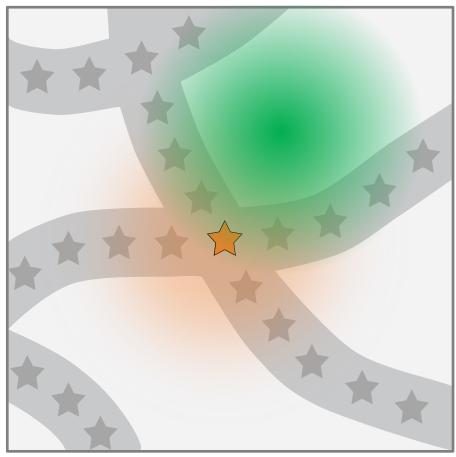
Expert-driven projects :: pyMINFLUX


QC sample: Nuclear pore complex imaging

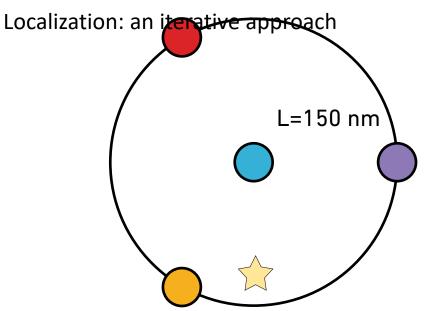

Expert-driven projects :: pyMINFLUX

When the minimum at the center of the excitation donut and the fluorophore overlap there is no excitation, and thus no emission

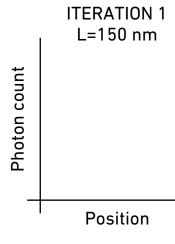
Beam position = Fluorophore position



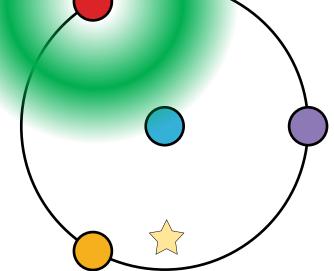
Expert-driven projects :: pyMINFLUX


Localization: an iterative approach

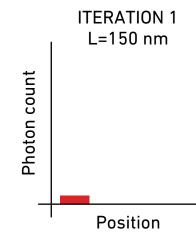
Estimate fluorophore position with spot-shaped beam


Expert-driven projects :: pyMINFLUX

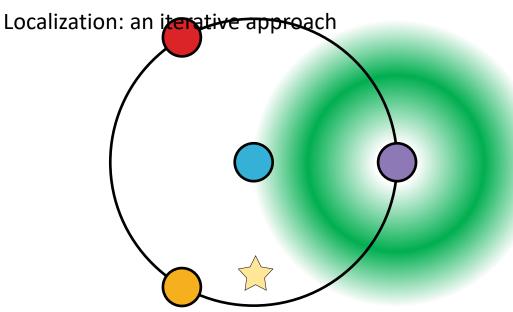
Estimate fluorophore position with spot-shaped beam


MINFLUX iteration:

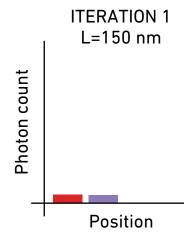
1. Define scanning region according to previous estimation


Expert-driven projects :: pyMINFLUX

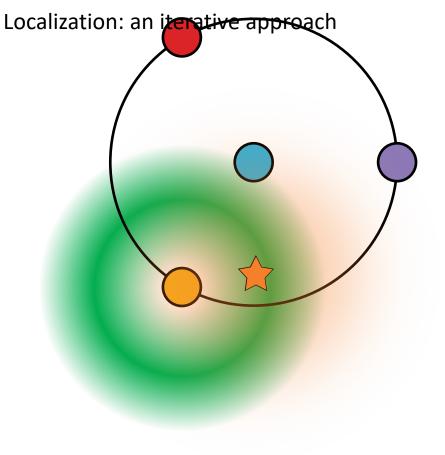
Localization: an iterative approach


Estimate fluorophore position with spot-shaped beam

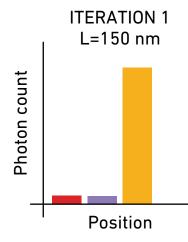
- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern



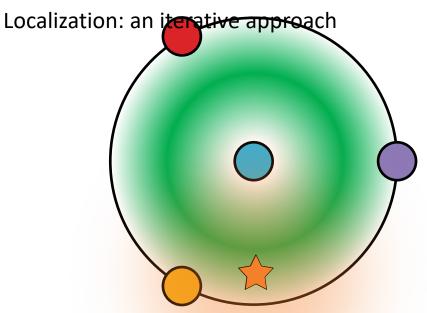
Expert-driven projects :: pyMINFLUX


Estimate fluorophore position with spot-shaped beam

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern

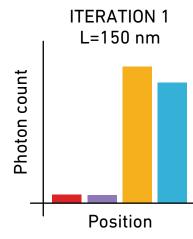


Expert-driven projects :: pyMINFLUX

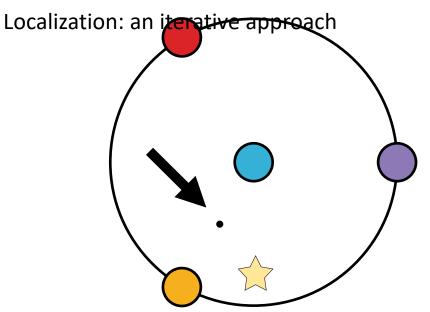


Estimate fluorophore position with spot-shaped beam

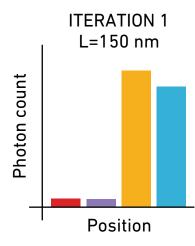
- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern



Expert-driven projects :: pyMINFLUX

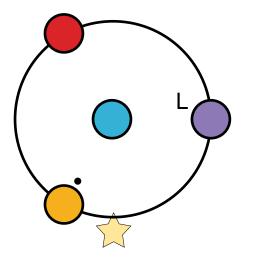

Estimate fluorophore position with spot-shaped beam

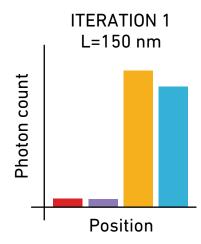
- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern



Expert-driven projects :: pyMINFLUX

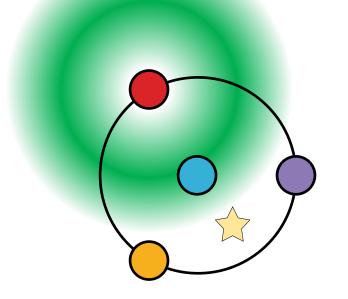
Estimate fluorophore position with spot-shaped beam

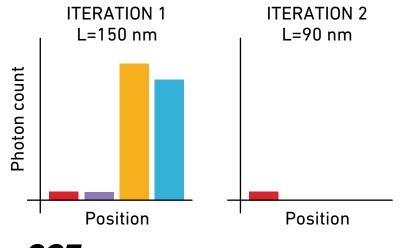

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

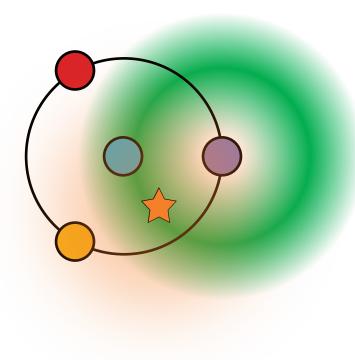
Estimate fluorophore position with spot-shaped beam

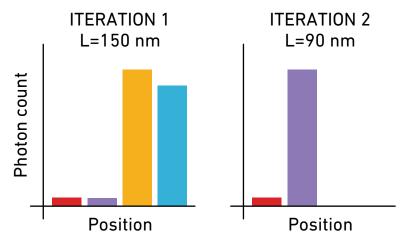

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

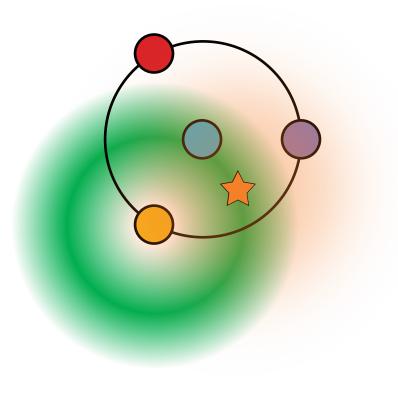
Estimate fluorophore position with spot-shaped beam

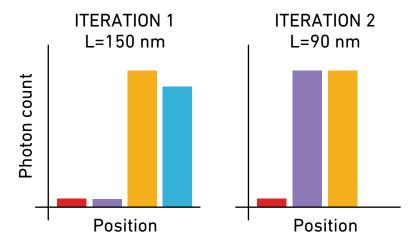

- Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

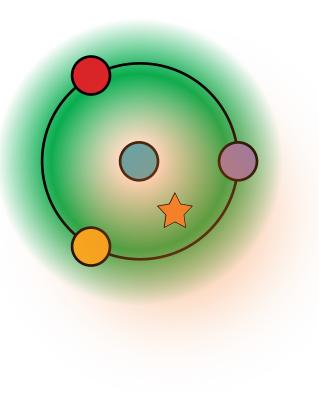
Estimate fluorophore position with spot-shaped beam

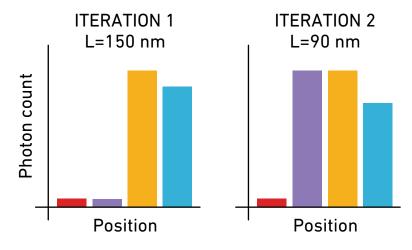

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

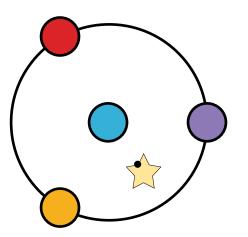
Estimate fluorophore position with spot-shaped beam

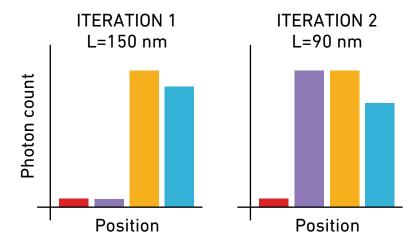

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

Estimate fluorophore position with spot-shaped beam

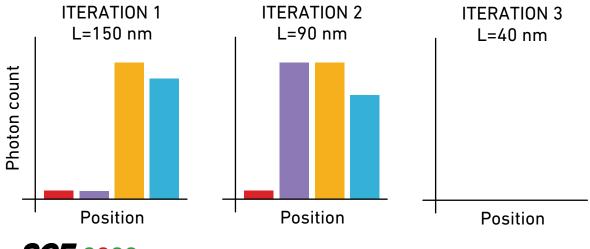

- Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

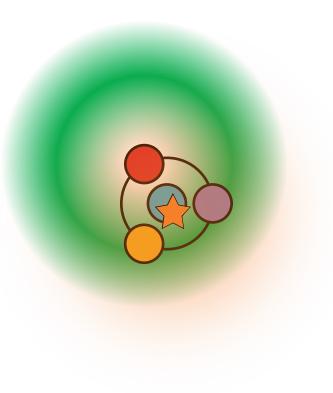
Estimate fluorophore position with spot-shaped beam

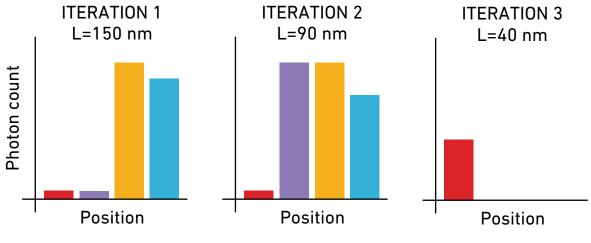
- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

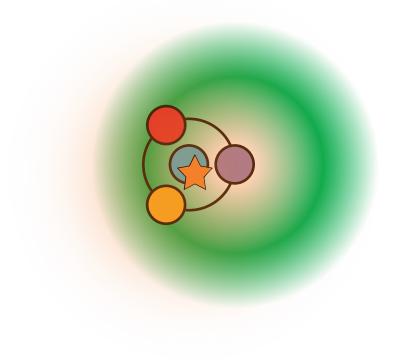
Estimate fluorophore position with spot-shaped beam

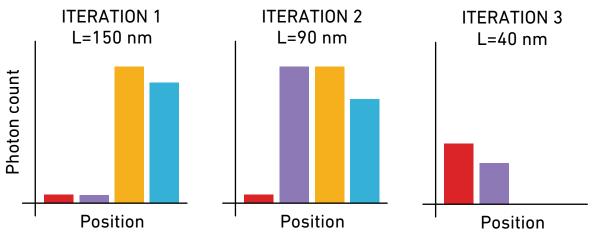

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

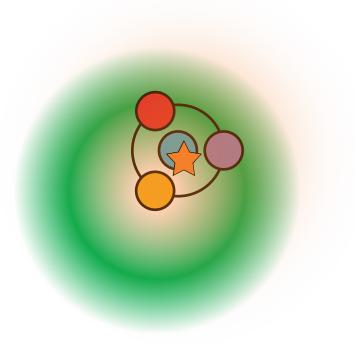
Estimate fluorophore position with spot-shaped beam

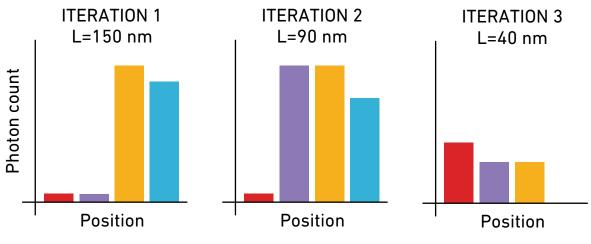

- Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

Estimate fluorophore position with spot-shaped beam


- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"


Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

Estimate fluorophore position with spot-shaped beam

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"

Expert-driven projects :: pyMINFLUX

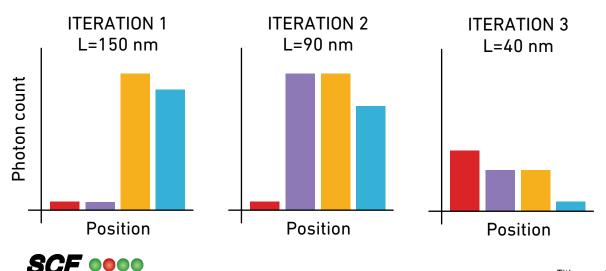
Localization: an iterative approach

Estimate fluorophore position with spot-shaped beam

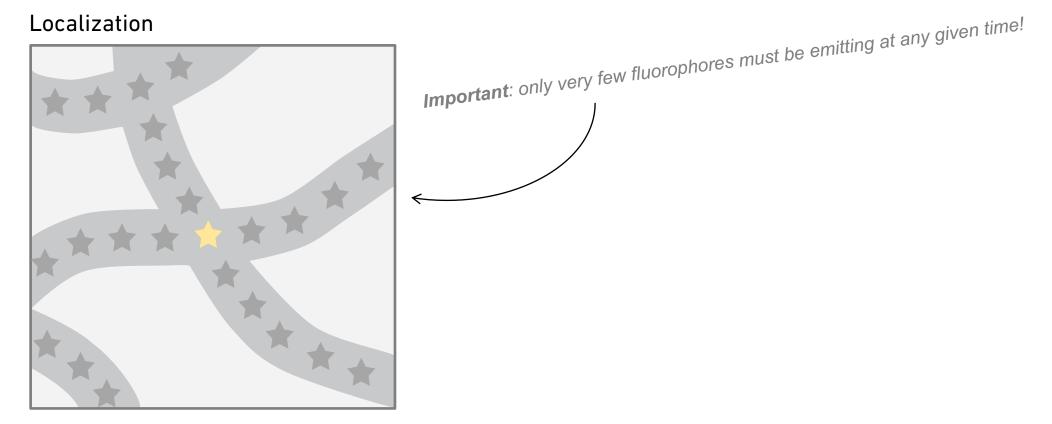
- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"

Expert-driven projects :: pyMINFLUX

Localization: an iterative approach

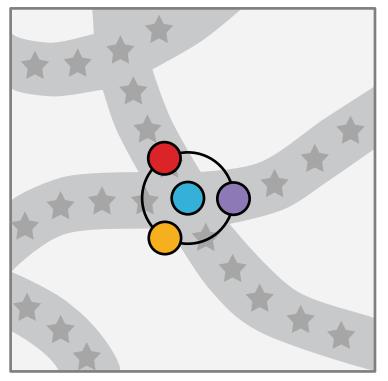

FLUOROPHORE LOCALIZATION

Estimate fluorophore position with spot-shaped beam


MINFLUX iteration:

- 1. Define scanning region according to previous estimation
- 2. Register emitted photons from every position in the pattern
- 3. Analyse photon counts and refine fluorophore position estimation
- 4. Decrease "L"

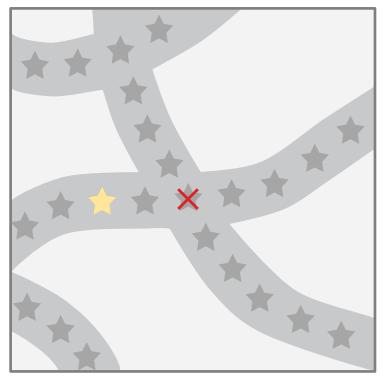
Single Cell Facility


Operation modalities

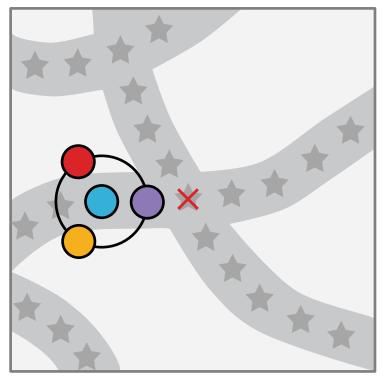
Operation modalities

Localization

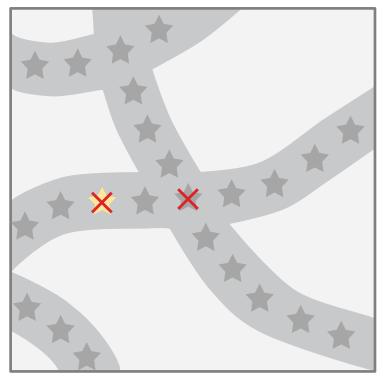
Operation modalities


Localization

Operation modalities

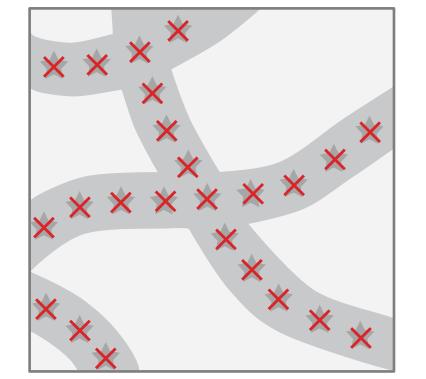

Localization

Operation modalities


Localization

Operation modalities

Localization

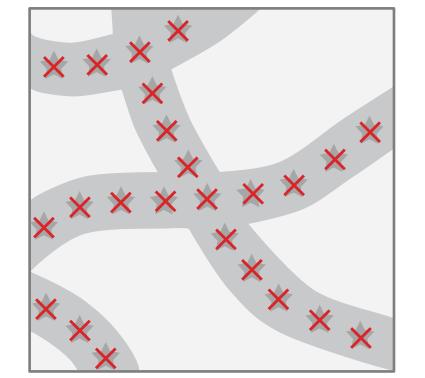


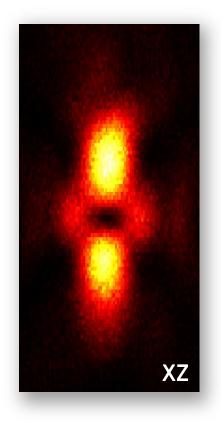
1. Fluorophores are localized 1 by 1

Operation modalities

Localization

1. Fluorophores are localized 1 by 1

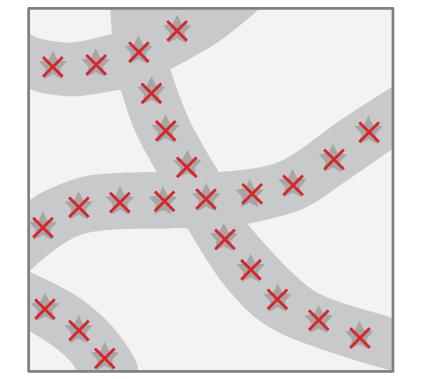



ETH zürich

Expert-driven projects :: pyMINFLUX

Operation modalities

Localization

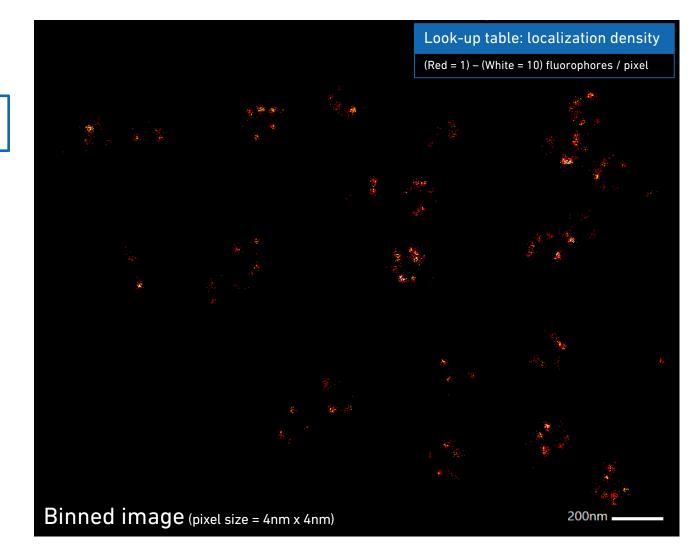


3 nm - 2D 5 nm - 3D

Operation modalities

Localization

- 1. Fluorophores are localized 1 by 1
- 2. Coordinates turned into an image

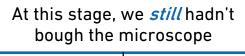


What we had:

٠

٠

Expert-driven projects :: pyMINFLUX


At this stage, we hadn't bough the microscope yet...

No localization data

Low-res raster images

🖲 🔵 🔵 रु#2

What we had:Undocumented .npy files

52604370+00, 87, True, False, 255, 2), , ([0, 2883933185356, [nan, nan, nan], [nan, nan, nan], 0, 0, nan, ([0, 2883933185356, [nan, nan, nan], [, nan, nan], 0, 0, nan, ("dos", " <i4"), ("dos", "<i4"), ("sky", "<i4"),< th=""><th><pre>-1.28408203e-07, 0., 100006006+00, 0.60512821, [2.880e -1.28408203e-07, 0., 1000.10001), (1, 8900 , 16, 75085.58806368, 5333.3333333, 0, 7.0312 000e+00, 0., -3.39345703e-08, -2.55322266e-09, 0., 52e-06, 0.0000000e+00], 113, 37, 56514.1285213 06, -3.39150003e-08, -2.55535439e-09, 0., 2.883449 , [9.19754484e-06, -2.84625514e-06, 0.000000000e-0 -2.84430902e-06, 9.20005812e-06, -5.08727986e-09, - 4745348e-06, 0.00000000e+00], [9.19480421e-06, -2 e-08, 3.960e-08, S.960e-08], -2.84435902e-06, 9.200 4485005e+00, 85, True, False, 255, 2), ([(0, 90231348, [nan, nan, 0, -3.05175781e-05, nan, [2.880e 0.00000000e+00, 0.10001), (1, 9023 , 0, nan, nan], 9, 0, nan 06, 0.00000000e+00, 0.00000000e+00, 0., 0.0000000e+00, 0, , nan, nan], 9, 0, nan 06, 0.00000000e+00, 0.00000000e+00, 0, 0.0000000e+00, 0, (5.919323572e-06, -2.84738554e-06, 0.000000000e+00, 2.84780267e-06, 9.19443312e-06, 0.00000000e+00, 2. 4464290e-06, 0.060000000e+00], [9.19419659e-06, -2 e-08, 3.960e-08], 3.960e-08], -2.84780267e-06, 9.194 6235652e+00, 85, True, False, 255, 2), ([(0, 9356727, [6.49866944e-06, -3.91 nan, 0, 0.00000000e+00], 0.57065886, [2.880e -1.80158203e-07, 0., 1000.10001), (1, 9384 ,155, 274068.51712292, 155000. 0, 5.6289 000e+00, 0, -3.97772969e-08, -2.82348633e-08, 0., 35e-06, 0.00000000e+00], 280, 112, 280070.01750438 06, -3.97631519e-08, -2.82287116e-08, 0, 0.00000000e+00 -3.91168455e-06, 6.49812452e-06, 0, 0.00000000e+00 -3.91168455e-06, 0.0000000e+00], [6.4486438e-06, -3.91 35e-06, 0.00000000e+00], 280, 112, 280070.01750438 06, -3.9763319e-08, -3.98938724e-06, 0, 0.00000000e+00 -3.91168455e-06, 6.49812452e-06, -7.04052393e-08, - 0075328e-06, 0.0000000e+00], [6.4486485e-06, -3.91</pre></th><th><pre>b71e-08, -1.51347656e-09, 0., 2500.31253907), (3,</pre></th><th><pre>13871094e-07, 000e+001, 227 400, 0.00000 06, -2.849389 9.20005812e- 00000000+00] 7.550e-081, ("ecc", "<i4"), 000000000e+00] ("ecc", "<i4"), ("ecc", "<i4"), ("efc", "<f8", (3,)),<br="">("ecc", "<i4"), ("ecc", "<i4"), ("efc", "<f8"), ("efc", "<f8"), ("fr", "<f8"), ("fr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), 00000000e+00] ("gvy", "<f8"), ("eox", "<f8"), ("eox", "<f8"), ("loc", "<f8"), ("eox", "<f8"), ("eox", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("eox", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("fr", "<f8"), ("loc", "<f8< th=""><th>timestamp?</th></f8<></f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </i4"), </i4"), </f8",></i4"), </i4"), </i4"), </pre></th></i4"),<></i4"), </i4"), 	<pre>-1.28408203e-07, 0., 100006006+00, 0.60512821, [2.880e -1.28408203e-07, 0., 1000.10001), (1, 8900 , 16, 75085.58806368, 5333.3333333, 0, 7.0312 000e+00, 0., -3.39345703e-08, -2.55322266e-09, 0., 52e-06, 0.0000000e+00], 113, 37, 56514.1285213 06, -3.39150003e-08, -2.55535439e-09, 0., 2.883449 , [9.19754484e-06, -2.84625514e-06, 0.000000000e-0 -2.84430902e-06, 9.20005812e-06, -5.08727986e-09, - 4745348e-06, 0.00000000e+00], [9.19480421e-06, -2 e-08, 3.960e-08, S.960e-08], -2.84435902e-06, 9.200 4485005e+00, 85, True, False, 255, 2), ([(0, 90231348, [nan, nan, 0, -3.05175781e-05, nan, [2.880e 0.00000000e+00, 0.10001), (1, 9023 , 0, nan, nan], 9, 0, nan 06, 0.00000000e+00, 0.00000000e+00, 0., 0.0000000e+00, 0, , nan, nan], 9, 0, nan 06, 0.00000000e+00, 0.00000000e+00, 0, 0.0000000e+00, 0, (5.919323572e-06, -2.84738554e-06, 0.000000000e+00, 2.84780267e-06, 9.19443312e-06, 0.00000000e+00, 2. 4464290e-06, 0.060000000e+00], [9.19419659e-06, -2 e-08, 3.960e-08], 3.960e-08], -2.84780267e-06, 9.194 6235652e+00, 85, True, False, 255, 2), ([(0, 9356727, [6.49866944e-06, -3.91 nan, 0, 0.00000000e+00], 0.57065886, [2.880e -1.80158203e-07, 0., 1000.10001), (1, 9384 ,155, 274068.51712292, 155000. 0, 5.6289 000e+00, 0, -3.97772969e-08, -2.82348633e-08, 0., 35e-06, 0.00000000e+00], 280, 112, 280070.01750438 06, -3.97631519e-08, -2.82287116e-08, 0, 0.00000000e+00 -3.91168455e-06, 6.49812452e-06, 0, 0.00000000e+00 -3.91168455e-06, 0.0000000e+00], [6.4486438e-06, -3.91 35e-06, 0.00000000e+00], 280, 112, 280070.01750438 06, -3.9763319e-08, -3.98938724e-06, 0, 0.00000000e+00 -3.91168455e-06, 6.49812452e-06, -7.04052393e-08, - 0075328e-06, 0.0000000e+00], [6.4486485e-06, -3.91</pre>	<pre>b71e-08, -1.51347656e-09, 0., 2500.31253907), (3,</pre>	<pre>13871094e-07, 000e+001, 227 400, 0.00000 06, -2.849389 9.20005812e- 00000000+00] 7.550e-081, ("ecc", "<i4"), 000000000e+00] ("ecc", "<i4"), ("ecc", "<i4"), ("efc", "<f8", (3,)),<br="">("ecc", "<i4"), ("ecc", "<i4"), ("efc", "<f8"), ("efc", "<f8"), ("fr", "<f8"), ("fr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), ("etr", "<f8"), 00000000e+00] ("gvy", "<f8"), ("eox", "<f8"), ("eox", "<f8"), ("loc", "<f8"), ("eox", "<f8"), ("eox", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("eox", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("loc", "<f8"), ("fr", "<f8"), ("loc", "<f8< th=""><th>timestamp?</th></f8<></f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </f8"), </i4"), </i4"), </f8",></i4"), </i4"), </i4"), </pre>	timestamp?
9.00000000e+00, 0., 1000.10001), (1, 2883933185490, [nan, nan, nan], [nan, nan, nan], 0]	9075328e-06, 0.00000000e+00], [6.44684485e-06, -3 e-08, 3.960e-08, 3.960e-08], -3.91168455e-06, 6.498 5260437e+00, 87, True, False, 255, 2), , ([[0, 2883933185356, [nan, nan, 0, -3.05175781e-05, nan, [2.880e	8.99075328e-06, 0.00000000e+00], 168, 105, 84021.00525131, 52500	06742, [3.960 ("tid", " <i4"), , 0, 87, 2.3 ("vld", "?"), ("act", "?"), ("dos", "<i4"), 00000000±+00, ("sky", "<i4"),< td=""><td></td></i4"),<></i4"), </i4"), 	

Testing phase

Now, we bought the microscope

Vabberior

IMSPECTOR

Acquisition

Data export

Developed for STED

Pixel-based MINFLUX data visualization requires "binning"

Licensed Viewer version available Windows-only 3D rendering software Built-in Imspector bridge Tools + Plugins Open-source Cross-platform

ParaView

Missing features Click-and-inspect Localization precision Fluorophore unmixing Filtering options Metrics comparison

Not facility-friendly

Fully open raw data format NumPy, MATLAB or JSON

Documentation from Abberior

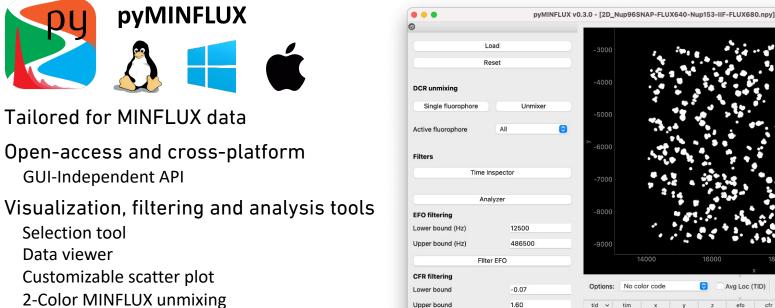
Production

Selection tool

Localization precision calculation

Manual and automatic filtering

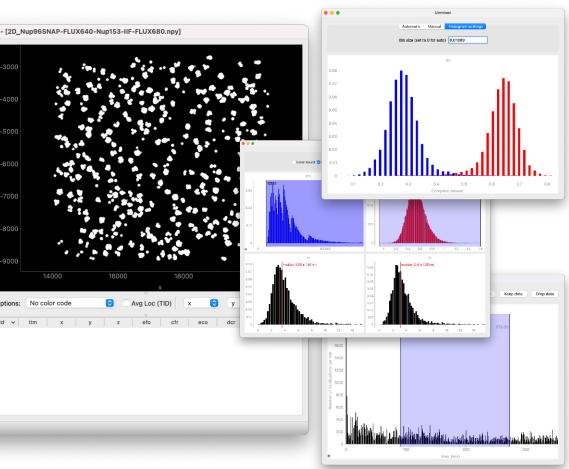
Fourier-ring correlation analysis


Integration with Paraview

Data viewer

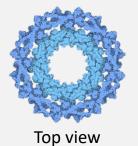
DBSSE

Expert-driven projects :: pyMINFLUX


https://github.com/bsse-scf/pyMINFLUX

Filter CFR

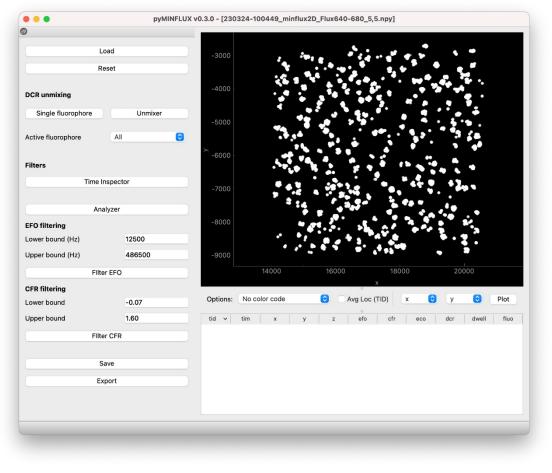
Save


Export

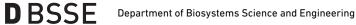
Custom .pmx format (metadata, processing parameters, ...)

QC sample Nuclear pore complex

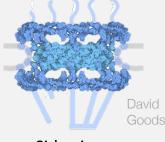




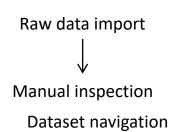
Side view

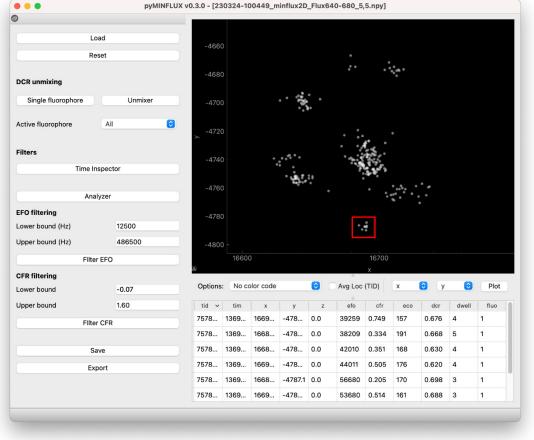

U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

pyMINFLUX workflow



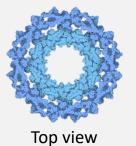
QC sample Nuclear pore complex


Side view


U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

Department of Biosystems Science and Engineering

DBSSE


pyMINFLUX workflow

QC sample Nuclear pore complex

Side view

U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

Department of Biosystems Science and Engineering

DBSSE

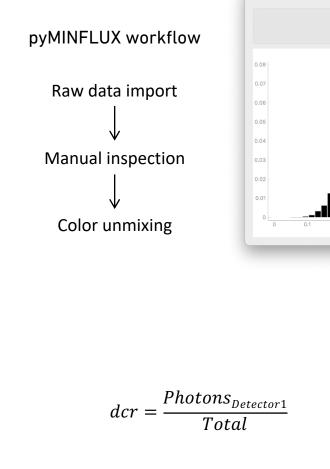
pyMINFLUX workflow


Raw data import

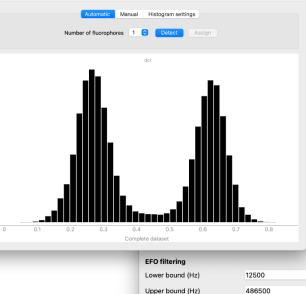
- Manual inspection Dataset navigation
- Trace coloring

	pyMINFLU	JX v0.3.0 - [23	0324-1	00449_m	ninflux2D	_Flux64	10-680_5	5.npy]				
)												
· · · ·	bad											
U	-4660											
R												
		-4680						• •				
DCR unmixing												
Single fluorophore	Unmixer	-4700			- 🐐	•						
						•						
Active fluorophore	All	-4720							•			
Filters								1				
		-4740		•	•							
Time I	nspector				1.01	:+	1					
		-4760			a particular					••		
Ana	alyzer									•		
EFO filtering		-4780										
Lower bound (Hz)	12500						••	•				
Upper bound (Hz)	486500	-4800										
Filte	r EFO		1660					16700				
CFR filtering		a					0	х				
Lower bound	-0.07	Options	Colo	r-code by	TID	0	Avg Loc	(TID)	x	🔅 у	٢	Plo
Upper bound	1.60	tid 🗸	tim	x	У	z	efo	cfr	eco	dcr	dwell	fluo
		7578	1369	1669	-478	0.0	39259	0.749	157	0.676	4	1
Filte	r CFR				-478		38209	0.334			5	
		7578	1369	1668		0.0			191	0.668		1
Save		7578	1369	1668	-478	0.0	42010	0.351	168	0.630	4	1
Export		7578	1369	1669	-478	0.0	44011	0.505	176	0.620	4	1
		7578	1369	1668	-4787.1	0.0	56680	0.205	170	0.698	3	1
		7578	1369	1669	-478	0.0	53680	0.514	161	0.688	3	1

QC sample Nuclear pore complex



Side view


U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

Department of Biosystems Science and Engineering

DBSSE

....

CFR filtering

Lower bound

Upper bound

Filter EFO

Filter CFR

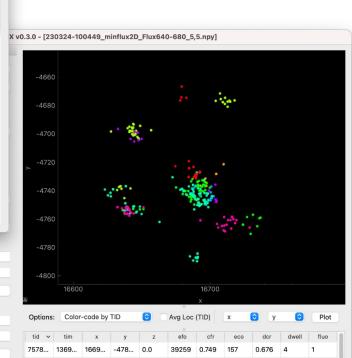
Save

Export

-0.07 1.60

7578

7578.


7578

7578

7578...

1369...

Unmixer

20200

44011 0.505

56680

53680 0.514 161

0.0

0.0

4787.1 0.0

1669... -478... 0.0

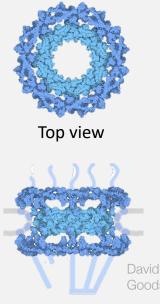
1

1

1

1

3 1

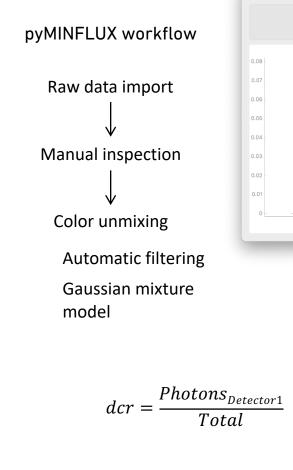

0.630

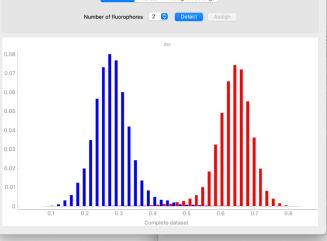
0.620

0.688

4

QC sample Nuclear pore complex



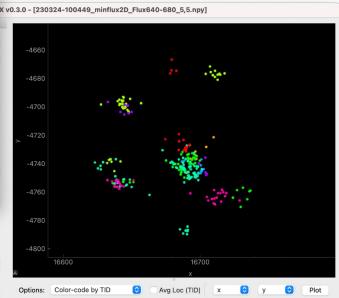

Side view

U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

Department of Biosystems Science and Engineering

DBSSE

SCF ••••

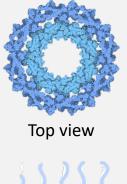

Single Cell Facility

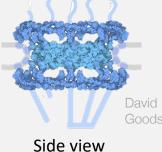
Unmixe

Histogram setting

Save

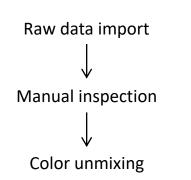
Export




tid 🗸	tim	x	У	z	efo	cfr	eco	dcr	dwell	flu
7578	1369	1669	-478	0.0	39259	0.749	157	0.676	4	1
7578	1369	1668	-478	0.0	38209	0.334	191	0.668	5	1
7578	1369	1668	-478	0.0	42010	0.351	168	0.630	4	1
7578	1369	1669	-478	0.0	44011	0.505	176	0.620	4	1
7578	1369	1668	-4787.1	0.0	56680	0.205	170	0.698	3	1
7578	1369	1669	-478	0.0	53680	0.514	161	0.688	3	1

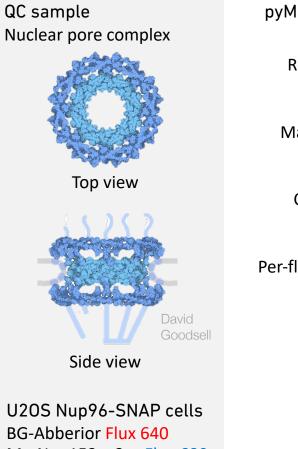
...

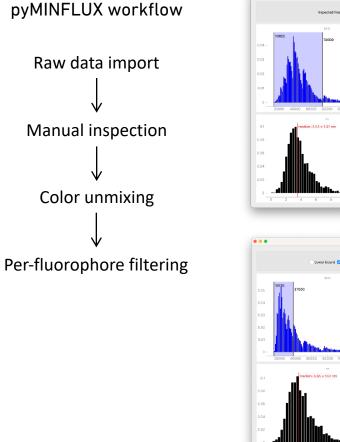
QC sample Nuclear pore complex

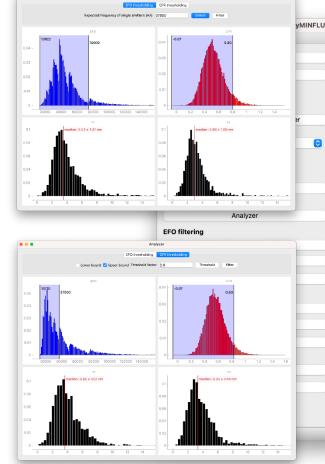


U2OS Nup96-SNAP cells **BG-Abberior Flux 640** Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

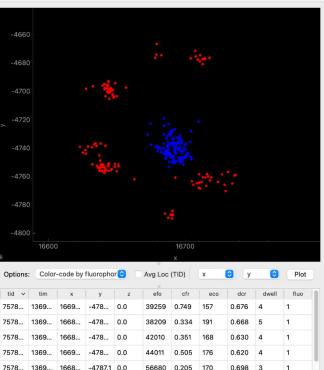
Department of Biosystems Science and Engineering


DBSSE


pyMINFLUX workflow



• • •	pyMINFLU	X v0.3.0 - [23	0324-10	00449_n	ninflux2D	_Flux64	40-680_5	,5.npy]				
•												
. I	Load)										
A	Reset	-4660) -									
		-4680										
DCR unmixing												
Single fluorophore	Unmixer	-4700			· 🐐							
Active fluorophore	All	-4720)									
		У										 Plot fluo 1 1 1 1 1 1 1
Filters		-4740										
Time	Inspector					-						
An	alyzer	-4760										
EFO filtering		-4780	,									
Lower bound (Hz)	12500	-4780	, 					•				
Upper bound (Hz)	486500	-4800) -									
Filt	er EFO		1660					16700				
CFR filtering		A	- 5				. 0	х	21			
Lower bound	-0.07	Options	Color	-code by	fluoropho	or ᅌ 🕚	Avg Loc	(TID)	x	🙆 у	0	Plot
Upper bound	1.60	tid 🗸	tim	x	У	z	efo	cfr	eco	dcr	dwell	fluo
Filt	er CFR	7578	1369	1669	-478	0.0	39259	0.749	157	0.676	4	1
		7578	1369	1668	-478	0.0	38209	0.334	191	0.668	5	1
	Save	7578	1369	1668	-478	0.0	42010	0.351	168	0.630	4	1
E	xport	7578	1369	1669	-478	0.0	44011	0.505	176	0.620	4	1
		7578	1369	1668	-4787.1	0.0	56680	0.205	170	0.698	3	1
		7578	1369	1669	-478	0.0	53680	0.514	161	0.688	3	1



yMINFLUX v0.3.0 - [230324-100449_minflux2D_Flux640-680_5,5.npy]

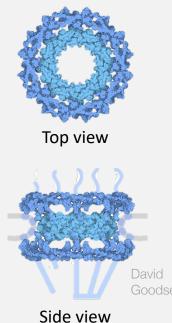
1369...

7578....

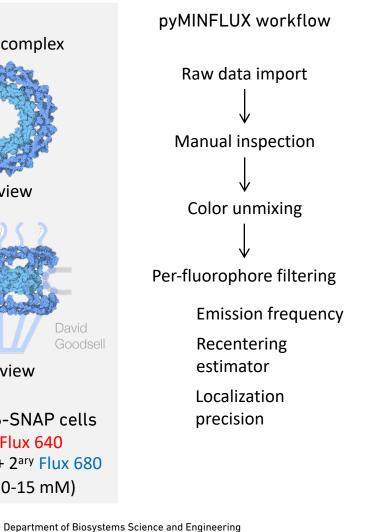
1669... -478... 0.0

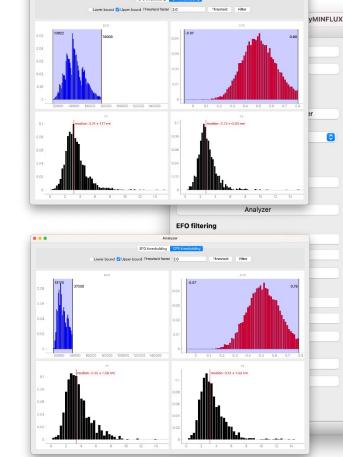
53680 0.514 161

0.688

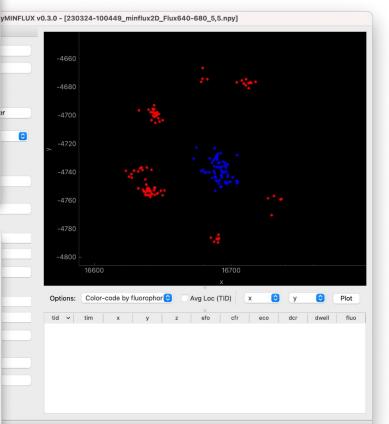

3

1

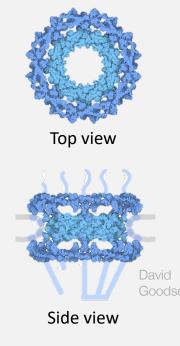

U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)

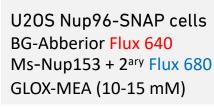


QC sample Nuclear pore complex

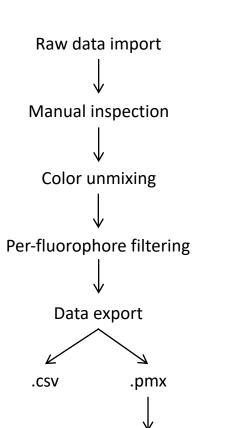


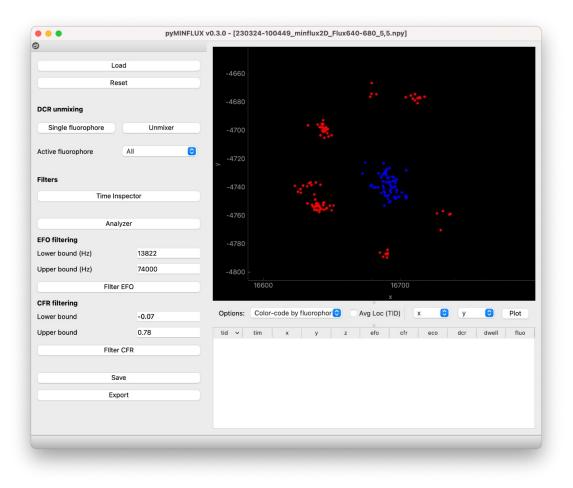
U2OS Nup96-SNAP cells BG-Abberior Flux 640 Ms-Nup153 + 2^{ary} Flux 680 GLOX-MEA (10-15 mM)



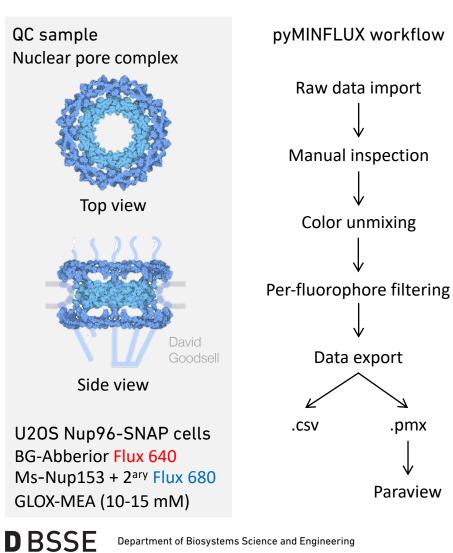


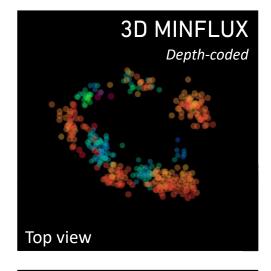
SCF •••• Single Cell Facility

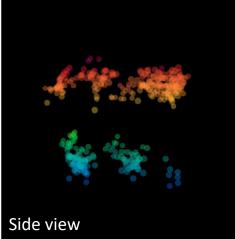

QC sample Nuclear pore complex

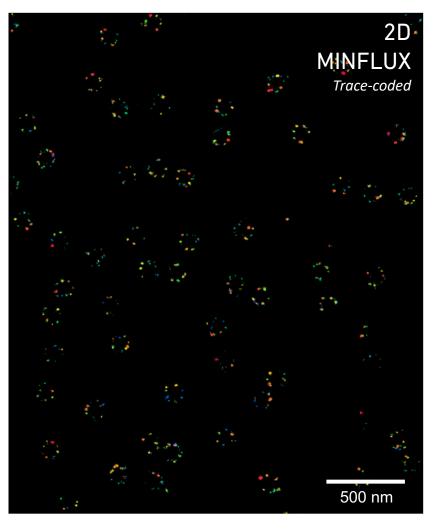


DBSSE

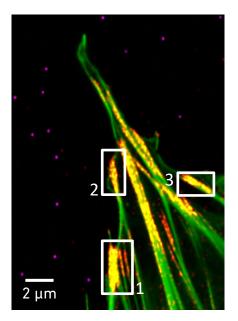

Paraview

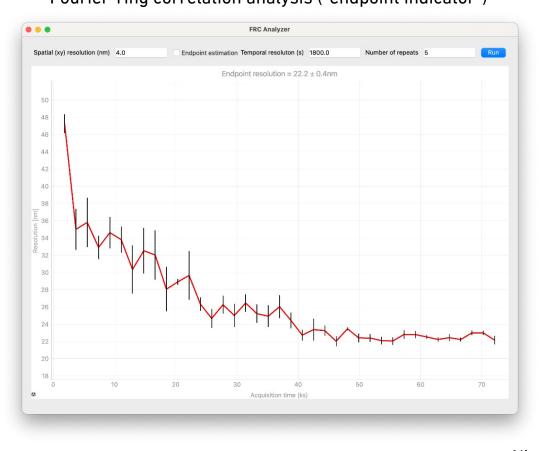





.pmx

Paraview





MEFs Phalloidin-AF488 Rat-Integrin + 2^{ary} AF568 Gold nanoparticles

Rb anti Paxillin sdAb DNA-PAINT Atto 655

DBSSE

Fourier-ring correlation analysis ("endpoint indicator")

Nico Strohmeyer, D-BSSE

Department of Biosystems Science and Engineering

Expert contributions

Javier Casares Arias: MINFLUX specialist, designed a lot of controlled experiments to test filtering and analysis strategies Aaron Ponti: development of pyMINFLUX

Users

- D-BSSE, Daniel Mueller Group (Michele Nava, Nico Strohmeyer, Matilde Lucioli, Krishna Kasuba)
- D-BSSE, Timm Schroeder Group (Germán Camargo)
- University of Basel, Thomas Ward Group (Michaela Slánská)
- University of Heidelberg (Charlotte Kaplan)

Summary

There are different classes of (image analysis) projects with different types of requirements and target audiences:

- User-specific projects usually have a small scope and are solved in a tight feedback loop with the end user.
- General-purpose projects target large audiences with less specific sets of functionality and often require larger development teams and better software engineering practices.
- Expert-driven projects require tight collaboration between experts with different sets of field knowledge with the goal of creating tools that appeal to reasonably large but niche audiences.

Acknowledgments

SCF ••••

Lab Automation

Daniel Gerngross

Sant Kumar

Thomas Horn (head of SCF and LAF)

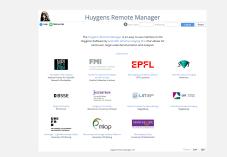
Microscopy

Erica Montani Javier Casares Arias Tom Lummen

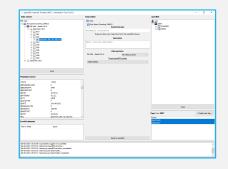
Flow Cytometry

Mariangela Di Tacchio Aleksandra Gumienny Chiara Cavallini

SpectraSorter Todd Duncombe, D-BSSE


pyPOCQuant Fabian Rudolf, D-BSSE and BAG Andreas Cuny, D-BSSE

pyMINFLUX Javier Casares Arias, D-BSSE


User-specific project Gabriel Senn, D-BSSE

HRM

Volker Bäcker, Montpellier Rio Imaging Daniel Sevilla, Scientific Volume Imaging Niko Ehrenfeuchter, Biozentrum Torsten Stöter, Leibniz Institute for Neurobiology Felix Meyenhofer, University of Fribourg Olivier Burri, EPFL Egor Zindy University of Manchester. Asheesh Gulati EPFL Alessandra Griffa, EPFL José Viña, Scientific Volume Imaging Kevin Namink, Scientific Volume Imaging Frederik Grüll Biozentrum oBIT

Thank you for your attention!

Bernd Rinn, SIS Chandrasekhar Ramakrishnan, SIS Juan Fuentes Serna, SIS Franz-Josef Elmer, SIS Caterina Barillari, SIS Piotr Kupczyk, SIS Antti Luomi, SIS Jakub Straszewski, SIS Manuel Kohler, SIS Vernon Bailey, ITSC John Ryan, ITSC Vincenzo Spanò, ITSC Martin Fox, ITSC

DBSSE

All the users!

